| 1 |
#include <math.h> |
| 2 |
#include "Atom.hpp" |
| 3 |
#include "SRI.hpp" |
| 4 |
#include "AbstractClasses.hpp" |
| 5 |
#include "SimInfo.hpp" |
| 6 |
#include "ForceFields.hpp" |
| 7 |
#include "Thermo.hpp" |
| 8 |
#include "ReadWrite.hpp" |
| 9 |
#include "Integrator.hpp" |
| 10 |
#include "simError.h" |
| 11 |
|
| 12 |
#ifdef IS_MPI |
| 13 |
#include "mpiSimulation.hpp" |
| 14 |
#endif |
| 15 |
|
| 16 |
// Basic non-isotropic thermostating and barostating via the Melchionna |
| 17 |
// modification of the Hoover algorithm: |
| 18 |
// |
| 19 |
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
| 20 |
// Molec. Phys., 78, 533. |
| 21 |
// |
| 22 |
// and |
| 23 |
// |
| 24 |
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
| 25 |
|
| 26 |
template<typename T> NPTxyz<T>::NPTxyz ( SimInfo *theInfo, ForceFields* the_ff): |
| 27 |
T( theInfo, the_ff ) |
| 28 |
{ |
| 29 |
|
| 30 |
int i,j; |
| 31 |
|
| 32 |
for(i = 0; i < 3; i++){ |
| 33 |
for (j = 0; j < 3; j++){ |
| 34 |
|
| 35 |
eta[i][j] = 0.0; |
| 36 |
oldEta[i][j] = 0.0; |
| 37 |
} |
| 38 |
} |
| 39 |
} |
| 40 |
|
| 41 |
template<typename T> NPTxyz<T>::~NPTxyz() { |
| 42 |
|
| 43 |
// empty for now |
| 44 |
} |
| 45 |
|
| 46 |
template<typename T> void NPTxyz<T>::resetIntegrator() { |
| 47 |
|
| 48 |
int i, j; |
| 49 |
|
| 50 |
for(i = 0; i < 3; i++) |
| 51 |
for (j = 0; j < 3; j++) |
| 52 |
eta[i][j] = 0.0; |
| 53 |
|
| 54 |
T::resetIntegrator(); |
| 55 |
} |
| 56 |
|
| 57 |
template<typename T> void NPTxyz<T>::evolveEtaA() { |
| 58 |
|
| 59 |
int i, j; |
| 60 |
|
| 61 |
for(i = 0; i < 3; i ++){ |
| 62 |
for(j = 0; j < 3; j++){ |
| 63 |
if( i == j) |
| 64 |
eta[i][j] += dt2 * instaVol * |
| 65 |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
| 66 |
else |
| 67 |
eta[i][j] = 0.0; |
| 68 |
} |
| 69 |
} |
| 70 |
|
| 71 |
for(i = 0; i < 3; i++) |
| 72 |
for (j = 0; j < 3; j++) |
| 73 |
oldEta[i][j] = eta[i][j]; |
| 74 |
} |
| 75 |
|
| 76 |
template<typename T> void NPTxyz<T>::evolveEtaB() { |
| 77 |
|
| 78 |
int i,j; |
| 79 |
|
| 80 |
for(i = 0; i < 3; i++) |
| 81 |
for (j = 0; j < 3; j++) |
| 82 |
prevEta[i][j] = eta[i][j]; |
| 83 |
|
| 84 |
for(i = 0; i < 3; i ++){ |
| 85 |
for(j = 0; j < 3; j++){ |
| 86 |
if( i == j) { |
| 87 |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
| 88 |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
| 89 |
} else { |
| 90 |
eta[i][j] = 0.0; |
| 91 |
} |
| 92 |
} |
| 93 |
} |
| 94 |
} |
| 95 |
|
| 96 |
template<typename T> void NPTxyz<T>::getVelScaleA(double sc[3], double vel[3]) { |
| 97 |
int i,j; |
| 98 |
double vScale[3][3]; |
| 99 |
|
| 100 |
for (i = 0; i < 3; i++ ) { |
| 101 |
for (j = 0; j < 3; j++ ) { |
| 102 |
vScale[i][j] = eta[i][j]; |
| 103 |
|
| 104 |
if (i == j) { |
| 105 |
vScale[i][j] += chi; |
| 106 |
} |
| 107 |
} |
| 108 |
} |
| 109 |
|
| 110 |
info->matVecMul3( vScale, vel, sc ); |
| 111 |
} |
| 112 |
|
| 113 |
template<typename T> void NPTxyz<T>::getVelScaleB(double sc[3], int index ){ |
| 114 |
int i,j; |
| 115 |
double myVel[3]; |
| 116 |
double vScale[3][3]; |
| 117 |
|
| 118 |
for (i = 0; i < 3; i++ ) { |
| 119 |
for (j = 0; j < 3; j++ ) { |
| 120 |
vScale[i][j] = eta[i][j]; |
| 121 |
|
| 122 |
if (i == j) { |
| 123 |
vScale[i][j] += chi; |
| 124 |
} |
| 125 |
} |
| 126 |
} |
| 127 |
|
| 128 |
for (j = 0; j < 3; j++) |
| 129 |
myVel[j] = oldVel[3*index + j]; |
| 130 |
|
| 131 |
info->matVecMul3( vScale, myVel, sc ); |
| 132 |
} |
| 133 |
|
| 134 |
template<typename T> void NPTxyz<T>::getPosScale(double pos[3], double COM[3], |
| 135 |
int index, double sc[3]){ |
| 136 |
int j; |
| 137 |
double rj[3]; |
| 138 |
|
| 139 |
for(j=0; j<3; j++) |
| 140 |
rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; |
| 141 |
|
| 142 |
info->matVecMul3( eta, rj, sc ); |
| 143 |
} |
| 144 |
|
| 145 |
template<typename T> void NPTxyz<T>::scaleSimBox( void ){ |
| 146 |
|
| 147 |
int i,j,k; |
| 148 |
double scaleMat[3][3]; |
| 149 |
double eta2ij, scaleFactor; |
| 150 |
double bigScale, smallScale, offDiagMax; |
| 151 |
double hm[3][3], hmnew[3][3]; |
| 152 |
|
| 153 |
|
| 154 |
|
| 155 |
// Scale the box after all the positions have been moved: |
| 156 |
|
| 157 |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
| 158 |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
| 159 |
|
| 160 |
bigScale = 1.0; |
| 161 |
smallScale = 1.0; |
| 162 |
offDiagMax = 0.0; |
| 163 |
|
| 164 |
for(i=0; i<3; i++){ |
| 165 |
for(j=0; j<3; j++){ |
| 166 |
scaleMat[i][j] = 0.0; |
| 167 |
if(i==j) scaleMat[i][j] = 1.0; |
| 168 |
} |
| 169 |
} |
| 170 |
|
| 171 |
for(i=0;i<3;i++){ |
| 172 |
|
| 173 |
// calculate the scaleFactors |
| 174 |
|
| 175 |
scaleFactor = exp(dt*eta[i][i]); |
| 176 |
|
| 177 |
scaleMat[i][i] = scaleFactor; |
| 178 |
|
| 179 |
if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; |
| 180 |
if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; |
| 181 |
} |
| 182 |
|
| 183 |
// for(i=0; i<3; i++){ |
| 184 |
// for(j=0; j<3; j++){ |
| 185 |
|
| 186 |
// // Calculate the matrix Product of the eta array (we only need |
| 187 |
// // the ij element right now): |
| 188 |
|
| 189 |
// eta2ij = 0.0; |
| 190 |
// for(k=0; k<3; k++){ |
| 191 |
// eta2ij += eta[i][k] * eta[k][j]; |
| 192 |
// } |
| 193 |
|
| 194 |
// scaleMat[i][j] = 0.0; |
| 195 |
// // identity matrix (see above): |
| 196 |
// if (i == j) scaleMat[i][j] = 1.0; |
| 197 |
// // Taylor expansion for the exponential truncated at second order: |
| 198 |
// scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij; |
| 199 |
|
| 200 |
// if (i != j) |
| 201 |
// if (fabs(scaleMat[i][j]) > offDiagMax) |
| 202 |
// offDiagMax = fabs(scaleMat[i][j]); |
| 203 |
// } |
| 204 |
|
| 205 |
// if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; |
| 206 |
// if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; |
| 207 |
// } |
| 208 |
|
| 209 |
if ((bigScale > 1.1) || (smallScale < 0.9)) { |
| 210 |
sprintf( painCave.errMsg, |
| 211 |
"NPTxyz error: Attempting a Box scaling of more than 10 percent.\n" |
| 212 |
" Check your tauBarostat, as it is probably too small!\n\n" |
| 213 |
" scaleMat = [%lf\t%lf\t%lf]\n" |
| 214 |
" [%lf\t%lf\t%lf]\n" |
| 215 |
" [%lf\t%lf\t%lf]\n", |
| 216 |
scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
| 217 |
scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
| 218 |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
| 219 |
painCave.isFatal = 1; |
| 220 |
simError(); |
| 221 |
} else { |
| 222 |
info->getBoxM(hm); |
| 223 |
info->matMul3(hm, scaleMat, hmnew); |
| 224 |
info->setBoxM(hmnew); |
| 225 |
} |
| 226 |
} |
| 227 |
|
| 228 |
template<typename T> bool NPTxyz<T>::etaConverged() { |
| 229 |
int i; |
| 230 |
double diffEta, sumEta; |
| 231 |
|
| 232 |
sumEta = 0; |
| 233 |
for(i = 0; i < 3; i++) |
| 234 |
sumEta += pow(prevEta[i][i] - eta[i][i], 2); |
| 235 |
|
| 236 |
diffEta = sqrt( sumEta / 3.0 ); |
| 237 |
|
| 238 |
return ( diffEta <= etaTolerance ); |
| 239 |
} |
| 240 |
|
| 241 |
template<typename T> double NPTxyz<T>::getConservedQuantity(void){ |
| 242 |
|
| 243 |
double conservedQuantity; |
| 244 |
double totalEnergy; |
| 245 |
double thermostat_kinetic; |
| 246 |
double thermostat_potential; |
| 247 |
double barostat_kinetic; |
| 248 |
double barostat_potential; |
| 249 |
double trEta; |
| 250 |
double a[3][3], b[3][3]; |
| 251 |
|
| 252 |
totalEnergy = tStats->getTotalE(); |
| 253 |
|
| 254 |
thermostat_kinetic = fkBT * tt2 * chi * chi / |
| 255 |
(2.0 * eConvert); |
| 256 |
|
| 257 |
thermostat_potential = fkBT* integralOfChidt / eConvert; |
| 258 |
|
| 259 |
info->transposeMat3(eta, a); |
| 260 |
info->matMul3(a, eta, b); |
| 261 |
trEta = info->matTrace3(b); |
| 262 |
|
| 263 |
barostat_kinetic = NkBT * tb2 * trEta / |
| 264 |
(2.0 * eConvert); |
| 265 |
|
| 266 |
barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / |
| 267 |
eConvert; |
| 268 |
|
| 269 |
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
| 270 |
barostat_kinetic + barostat_potential; |
| 271 |
|
| 272 |
// cout.width(8); |
| 273 |
// cout.precision(8); |
| 274 |
|
| 275 |
// cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << |
| 276 |
// "\t" << thermostat_potential << "\t" << barostat_kinetic << |
| 277 |
// "\t" << barostat_potential << "\t" << conservedQuantity << endl; |
| 278 |
|
| 279 |
return conservedQuantity; |
| 280 |
|
| 281 |
} |