1 |
#include <cmath> |
2 |
#include "Atom.hpp" |
3 |
#include "Molecule.hpp" |
4 |
#include "SRI.hpp" |
5 |
#include "AbstractClasses.hpp" |
6 |
#include "SimInfo.hpp" |
7 |
#include "ForceFields.hpp" |
8 |
#include "Thermo.hpp" |
9 |
#include "ReadWrite.hpp" |
10 |
#include "Integrator.hpp" |
11 |
#include "simError.h" |
12 |
|
13 |
|
14 |
// Basic isotropic thermostating and barostating via the Melchionna |
15 |
// modification of the Hoover algorithm: |
16 |
// |
17 |
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
18 |
// Molec. Phys., 78, 533. |
19 |
// |
20 |
// and |
21 |
// |
22 |
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
23 |
|
24 |
// The NPTim variant scales the molecular center-of-mass coordinates |
25 |
// instead of the atomic coordinates |
26 |
|
27 |
template<typename T> NPTim<T>::NPTim ( SimInfo *theInfo, ForceFields* the_ff): |
28 |
T( theInfo, the_ff ) |
29 |
{ |
30 |
chi = 0.0; |
31 |
eta = 0.0; |
32 |
integralOfChidt = 0.0; |
33 |
have_tau_thermostat = 0; |
34 |
have_tau_barostat = 0; |
35 |
have_target_temp = 0; |
36 |
have_target_pressure = 0; |
37 |
} |
38 |
|
39 |
template<typename T> void NPTim<T>::moveA() { |
40 |
|
41 |
int i, j, k; |
42 |
DirectionalAtom* dAtom; |
43 |
double Tb[3], ji[3]; |
44 |
double A[3][3], I[3][3]; |
45 |
double angle, mass; |
46 |
double vel[3], pos[3], frc[3]; |
47 |
|
48 |
double rj[3]; |
49 |
double instaTemp, instaPress, instaVol; |
50 |
double tt2, tb2, scaleFactor; |
51 |
|
52 |
int nInMol; |
53 |
double rc[3]; |
54 |
|
55 |
nMols = info->n_mol; |
56 |
myMolecules = info->molecules; |
57 |
|
58 |
tt2 = tauThermostat * tauThermostat; |
59 |
tb2 = tauBarostat * tauBarostat; |
60 |
|
61 |
instaTemp = tStats->getTemperature(); |
62 |
instaPress = tStats->getPressure(); |
63 |
instaVol = tStats->getVolume(); |
64 |
|
65 |
// first evolve chi a half step |
66 |
|
67 |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
68 |
eta += dt2 * ( instaVol * (instaPress - targetPressure) / |
69 |
(p_convert*NkBT*tb2)); |
70 |
|
71 |
for( i = 0; i < nMols; i++) { |
72 |
|
73 |
myMolecules[i].getCOM(rc); |
74 |
|
75 |
nInMol = myMolecules[i].getNAtoms(); |
76 |
myAtoms = myMolecules[i].getMyAtoms(); |
77 |
|
78 |
// find the minimum image coordinates of the molecular centers of mass: |
79 |
|
80 |
info->wrapVector(rc); |
81 |
|
82 |
for (j = 0; j < nInMol; j++) { |
83 |
|
84 |
if(myAtoms[j] != NULL) { |
85 |
|
86 |
myAtoms[j]->getVel( vel ); |
87 |
myAtoms[j]->getPos( pos ); |
88 |
myAtoms[j]->getFrc( frc ); |
89 |
|
90 |
mass = myAtoms[j]->getMass(); |
91 |
|
92 |
for (k=0; k < 3; k++) |
93 |
vel[k] += dt2 * ((frc[k] / mass ) * eConvert - vel[k]*(chi+eta)); |
94 |
|
95 |
myAtoms[j]->setVel( vel ); |
96 |
|
97 |
for (k = 0; k < 3; k++) |
98 |
pos[k] += dt * (vel[k] + eta*rc[k]); |
99 |
|
100 |
myAtoms[j]->setPos( pos ); |
101 |
|
102 |
if( myAtoms[j]->isDirectional() ){ |
103 |
|
104 |
dAtom = (DirectionalAtom *)myAtoms[j]; |
105 |
|
106 |
// get and convert the torque to body frame |
107 |
|
108 |
dAtom->getTrq( Tb ); |
109 |
dAtom->lab2Body( Tb ); |
110 |
|
111 |
// get the angular momentum, and propagate a half step |
112 |
|
113 |
dAtom->getJ( ji ); |
114 |
|
115 |
for (k=0; k < 3; k++) |
116 |
ji[k] += dt2 * (Tb[k] * eConvert - ji[k]*chi); |
117 |
|
118 |
// use the angular velocities to propagate the rotation matrix a |
119 |
// full time step |
120 |
|
121 |
dAtom->getA(A); |
122 |
dAtom->getI(I); |
123 |
|
124 |
// rotate about the x-axis |
125 |
angle = dt2 * ji[0] / I[0][0]; |
126 |
this->rotate( 1, 2, angle, ji, A ); |
127 |
|
128 |
// rotate about the y-axis |
129 |
angle = dt2 * ji[1] / I[1][1]; |
130 |
this->rotate( 2, 0, angle, ji, A ); |
131 |
|
132 |
// rotate about the z-axis |
133 |
angle = dt * ji[2] / I[2][2]; |
134 |
this->rotate( 0, 1, angle, ji, A); |
135 |
|
136 |
// rotate about the y-axis |
137 |
angle = dt2 * ji[1] / I[1][1]; |
138 |
this->rotate( 2, 0, angle, ji, A ); |
139 |
|
140 |
// rotate about the x-axis |
141 |
angle = dt2 * ji[0] / I[0][0]; |
142 |
this->rotate( 1, 2, angle, ji, A ); |
143 |
|
144 |
dAtom->setJ( ji ); |
145 |
dAtom->setA( A ); |
146 |
} |
147 |
} |
148 |
} |
149 |
} |
150 |
|
151 |
// Scale the box after all the positions have been moved: |
152 |
|
153 |
scaleFactor = exp(dt*eta); |
154 |
|
155 |
if (scaleFactor > 1.1 || scaleFactor < 0.9) { |
156 |
sprintf( painCave.errMsg, |
157 |
"NPTi error: Attempting a Box scaling of more than 10 percent" |
158 |
" check your tauBarostat, as it is probably too small!\n" |
159 |
" eta = %lf, scaleFactor = %lf\n", eta, scaleFactor |
160 |
); |
161 |
painCave.isFatal = 1; |
162 |
simError(); |
163 |
} else { |
164 |
info->scaleBox(exp(dt*eta)); |
165 |
} |
166 |
} |
167 |
|
168 |
template<typename T> void NPTim<T>::moveB( void ){ |
169 |
int i, j; |
170 |
DirectionalAtom* dAtom; |
171 |
double Tb[3], ji[3]; |
172 |
double vel[3], frc[3]; |
173 |
double mass; |
174 |
|
175 |
double instaTemp, instaPress, instaVol; |
176 |
double tt2, tb2; |
177 |
|
178 |
tt2 = tauThermostat * tauThermostat; |
179 |
tb2 = tauBarostat * tauBarostat; |
180 |
|
181 |
instaTemp = tStats->getTemperature(); |
182 |
instaPress = tStats->getPressure(); |
183 |
instaVol = tStats->getVolume(); |
184 |
|
185 |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
186 |
eta += dt2 * ( instaVol * (instaPress - targetPressure) / |
187 |
(p_convert*NkBT*tb2)); |
188 |
|
189 |
for( i=0; i<nAtoms; i++ ){ |
190 |
|
191 |
atoms[i]->getVel( vel ); |
192 |
atoms[i]->getFrc( frc ); |
193 |
|
194 |
mass = atoms[i]->getMass(); |
195 |
|
196 |
// velocity half step |
197 |
for (j=0; j < 3; j++) |
198 |
vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*(chi+eta)); |
199 |
|
200 |
atoms[i]->setVel( vel ); |
201 |
|
202 |
if( atoms[i]->isDirectional() ){ |
203 |
|
204 |
dAtom = (DirectionalAtom *)atoms[i]; |
205 |
|
206 |
// get and convert the torque to body frame |
207 |
|
208 |
dAtom->getTrq( Tb ); |
209 |
dAtom->lab2Body( Tb ); |
210 |
|
211 |
// get the angular momentum, and propagate a half step |
212 |
|
213 |
dAtom->getJ( ji ); |
214 |
|
215 |
for (j=0; j < 3; j++) |
216 |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
217 |
|
218 |
dAtom->setJ( ji ); |
219 |
} |
220 |
} |
221 |
} |
222 |
|
223 |
template<typename T> void NPTim<T>::resetIntegrator() { |
224 |
chi = 0.0; |
225 |
eta = 0.0; |
226 |
} |
227 |
|
228 |
template<typename T> int NPTim<T>::readyCheck() { |
229 |
|
230 |
//check parent's readyCheck() first |
231 |
if (T::readyCheck() == -1) |
232 |
return -1; |
233 |
|
234 |
// First check to see if we have a target temperature. |
235 |
// Not having one is fatal. |
236 |
|
237 |
if (!have_target_temp) { |
238 |
sprintf( painCave.errMsg, |
239 |
"NPTim error: You can't use the NPTim integrator\n" |
240 |
" without a targetTemp!\n" |
241 |
); |
242 |
painCave.isFatal = 1; |
243 |
simError(); |
244 |
return -1; |
245 |
} |
246 |
|
247 |
if (!have_target_pressure) { |
248 |
sprintf( painCave.errMsg, |
249 |
"NPTim error: You can't use the NPTim integrator\n" |
250 |
" without a targetPressure!\n" |
251 |
); |
252 |
painCave.isFatal = 1; |
253 |
simError(); |
254 |
return -1; |
255 |
} |
256 |
|
257 |
// We must set tauThermostat. |
258 |
|
259 |
if (!have_tau_thermostat) { |
260 |
sprintf( painCave.errMsg, |
261 |
"NPTim error: If you use the NPTim\n" |
262 |
" integrator, you must set tauThermostat.\n"); |
263 |
painCave.isFatal = 1; |
264 |
simError(); |
265 |
return -1; |
266 |
} |
267 |
|
268 |
// We must set tauBarostat. |
269 |
|
270 |
if (!have_tau_barostat) { |
271 |
sprintf( painCave.errMsg, |
272 |
"NPTim error: If you use the NPTim\n" |
273 |
" integrator, you must set tauBarostat.\n"); |
274 |
painCave.isFatal = 1; |
275 |
simError(); |
276 |
return -1; |
277 |
} |
278 |
|
279 |
// We need NkBT a lot, so just set it here: |
280 |
|
281 |
NkBT = (double)info->ndf * kB * targetTemp; |
282 |
|
283 |
return 1; |
284 |
} |
285 |
|
286 |
template<typename T> double NPTim<T>::getConservedQuantity(void){ |
287 |
|
288 |
double conservedQuantity; |
289 |
double tb2; |
290 |
double eta2; |
291 |
|
292 |
|
293 |
//HNVE |
294 |
conservedQuantity = tStats->getTotalE(); |
295 |
|
296 |
//HNVT |
297 |
conservedQuantity += (info->getNDF() * kB * targetTemp * |
298 |
(integralOfChidt + tauThermostat * tauThermostat * chi * chi /2))/ eConvert ; |
299 |
|
300 |
//HNPT |
301 |
tb2 = tauBarostat *tauBarostat; |
302 |
eta2 = eta * eta; |
303 |
|
304 |
conservedQuantity += (targetPressure * tStats->getVolume() / p_convert + |
305 |
3*NkBT/2 * tb2 * eta2) / eConvert; |
306 |
|
307 |
return conservedQuantity; |
308 |
} |