1 |
|
#include <cmath> |
2 |
|
#include "Atom.hpp" |
3 |
+ |
#include "Molecule.hpp" |
4 |
|
#include "SRI.hpp" |
5 |
|
#include "AbstractClasses.hpp" |
6 |
|
#include "SimInfo.hpp" |
24 |
|
// The NPTim variant scales the molecular center-of-mass coordinates |
25 |
|
// instead of the atomic coordinates |
26 |
|
|
27 |
< |
NPTim::NPTim ( SimInfo *theInfo, ForceFields* the_ff): |
28 |
< |
Integrator( theInfo, the_ff ) |
27 |
> |
template<typename T> NPTim<T>::NPTim ( SimInfo *theInfo, ForceFields* the_ff): |
28 |
> |
T( theInfo, the_ff ) |
29 |
|
{ |
30 |
|
chi = 0.0; |
31 |
|
eta = 0.0; |
35 |
|
have_target_pressure = 0; |
36 |
|
} |
37 |
|
|
38 |
< |
void NPTim::moveA() { |
38 |
> |
template<typename T> void NPTim<T>::moveA() { |
39 |
|
|
40 |
< |
int i,j,k; |
40 |
< |
int nInMol, aMatIndex; |
40 |
> |
int i, j, k; |
41 |
|
DirectionalAtom* dAtom; |
42 |
< |
Atom** theAtoms; |
43 |
< |
Molecule** myMols; |
44 |
< |
double Tb[3]; |
45 |
< |
double ji[3]; |
46 |
< |
double rc[3]; |
47 |
< |
double mass; |
48 |
< |
double rx, ry, rz, vx, vy, vz, fx, fy, fz; |
42 |
> |
double Tb[3], ji[3]; |
43 |
> |
double A[3][3], I[3][3]; |
44 |
> |
double angle, mass; |
45 |
> |
double vel[3], pos[3], frc[3]; |
46 |
> |
|
47 |
> |
double rj[3]; |
48 |
|
double instaTemp, instaPress, instaVol; |
49 |
< |
double tt2, tb2; |
51 |
< |
double angle; |
49 |
> |
double tt2, tb2, scaleFactor; |
50 |
|
|
51 |
+ |
int nInMol; |
52 |
+ |
double rc[3]; |
53 |
+ |
|
54 |
|
nMols = info->n_mol; |
55 |
< |
myMols = info->molecules; |
55 |
> |
myMolecules = info->molecules; |
56 |
|
|
57 |
|
tt2 = tauThermostat * tauThermostat; |
58 |
|
tb2 = tauBarostat * tauBarostat; |
69 |
|
|
70 |
|
for( i = 0; i < nMols; i++) { |
71 |
|
|
72 |
< |
myMols[i].getCOM(rc); |
72 |
> |
myMolecules[i].getCOM(rc); |
73 |
|
|
74 |
< |
nInMol = myMols[i]->getNAtoms(); |
75 |
< |
theAtoms = myMols[i]->getMyAtoms(); |
74 |
> |
nInMol = myMolecules[i].getNAtoms(); |
75 |
> |
myAtoms = myMolecules[i].getMyAtoms(); |
76 |
|
|
77 |
|
// find the minimum image coordinates of the molecular centers of mass: |
78 |
|
|
80 |
|
|
81 |
|
for (j = 0; j < nInMol; j++) { |
82 |
|
|
83 |
< |
if(theAtoms[j] != NULL) { |
83 |
> |
if(myAtoms[j] != NULL) { |
84 |
|
|
85 |
< |
aMatIndex = 9 * theAtoms[j]->getIndex(); |
86 |
< |
|
87 |
< |
mass = theAtoms[j]->getMass(); |
87 |
< |
|
88 |
< |
vx = theAtoms[j]->get_vx(); |
89 |
< |
vy = theAtoms[j]->get_vy(); |
90 |
< |
vz = theAtoms[j]->get_vz(); |
91 |
< |
|
92 |
< |
fx = theAtoms[j]->getFx(); |
93 |
< |
fy = theAtoms[j]->getFy(); |
94 |
< |
fz = theAtoms[j]->getFz(); |
85 |
> |
myAtoms[j]->getVel( vel ); |
86 |
> |
myAtoms[j]->getPos( pos ); |
87 |
> |
myAtoms[j]->getFrc( frc ); |
88 |
|
|
89 |
< |
rx = theAtoms[j]->getX(); |
97 |
< |
ry = theAtoms[j]->getY(); |
98 |
< |
rz = theAtoms[j]->getZ(); |
89 |
> |
mass = myAtoms[j]->getMass(); |
90 |
|
|
91 |
< |
// velocity half step |
91 |
> |
for (k=0; k < 3; k++) |
92 |
> |
vel[k] += dt2 * ((frc[k] / mass ) * eConvert - vel[k]*(chi+eta)); |
93 |
|
|
94 |
< |
vx += dt2 * ((fx / mass)*eConvert - vx*(chi+eta)); |
103 |
< |
vy += dt2 * ((fy / mass)*eConvert - vy*(chi+eta)); |
104 |
< |
vz += dt2 * ((fz / mass)*eConvert - vz*(chi+eta)); |
94 |
> |
myAtoms[j]->setVel( vel ); |
95 |
|
|
96 |
< |
// position whole step |
96 |
> |
for (k = 0; k < 3; k++) |
97 |
> |
pos[k] += dt * (vel[k] + eta*rc[k]); |
98 |
|
|
99 |
< |
rx += dt*(vx + eta*rc[0]); |
109 |
< |
ry += dt*(vy + eta*rc[1]); |
110 |
< |
rz += dt*(vz + eta*rc[2]); |
111 |
< |
|
112 |
< |
theAtoms[j]->set_vx(vx); |
113 |
< |
theAtoms[j]->set_vy(vy); |
114 |
< |
theAtoms[j]->set_vz(vz); |
99 |
> |
myAtoms[j]->setPos( pos ); |
100 |
|
|
101 |
< |
theAtoms[j]->setX(rx); |
117 |
< |
theAtoms[j]->setY(ry); |
118 |
< |
theAtoms[j]->setZ(rz); |
101 |
> |
if( myAtoms[j]->isDirectional() ){ |
102 |
|
|
103 |
< |
if( theAtoms[j]->isDirectional() ){ |
121 |
< |
|
122 |
< |
dAtom = (DirectionalAtom *)theAtoms[j]; |
103 |
> |
dAtom = (DirectionalAtom *)myAtoms[j]; |
104 |
|
|
105 |
|
// get and convert the torque to body frame |
106 |
< |
|
107 |
< |
Tb[0] = dAtom->getTx(); |
127 |
< |
Tb[1] = dAtom->getTy(); |
128 |
< |
Tb[2] = dAtom->getTz(); |
129 |
< |
|
106 |
> |
|
107 |
> |
dAtom->getTrq( Tb ); |
108 |
|
dAtom->lab2Body( Tb ); |
109 |
< |
|
109 |
> |
|
110 |
|
// get the angular momentum, and propagate a half step |
111 |
|
|
112 |
< |
ji[0] = dAtom->getJx(); |
113 |
< |
ji[1] = dAtom->getJy(); |
114 |
< |
ji[2] = dAtom->getJz(); |
112 |
> |
dAtom->getJ( ji ); |
113 |
> |
|
114 |
> |
for (k=0; k < 3; k++) |
115 |
> |
ji[k] += dt2 * (Tb[k] * eConvert - ji[k]*chi); |
116 |
|
|
138 |
– |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
139 |
– |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
140 |
– |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
141 |
– |
|
117 |
|
// use the angular velocities to propagate the rotation matrix a |
118 |
|
// full time step |
119 |
|
|
120 |
+ |
dAtom->getA(A); |
121 |
+ |
dAtom->getI(I); |
122 |
+ |
|
123 |
|
// rotate about the x-axis |
124 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
125 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
124 |
> |
angle = dt2 * ji[0] / I[0][0]; |
125 |
> |
this->rotate( 1, 2, angle, ji, A ); |
126 |
|
|
127 |
|
// rotate about the y-axis |
128 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
129 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
128 |
> |
angle = dt2 * ji[1] / I[1][1]; |
129 |
> |
this->rotate( 2, 0, angle, ji, A ); |
130 |
|
|
131 |
|
// rotate about the z-axis |
132 |
< |
angle = dt * ji[2] / dAtom->getIzz(); |
133 |
< |
this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); |
132 |
> |
angle = dt * ji[2] / I[2][2]; |
133 |
> |
this->rotate( 0, 1, angle, ji, A); |
134 |
|
|
135 |
|
// rotate about the y-axis |
136 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
137 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
136 |
> |
angle = dt2 * ji[1] / I[1][1]; |
137 |
> |
this->rotate( 2, 0, angle, ji, A ); |
138 |
|
|
139 |
|
// rotate about the x-axis |
140 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
141 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
140 |
> |
angle = dt2 * ji[0] / I[0][0]; |
141 |
> |
this->rotate( 1, 2, angle, ji, A ); |
142 |
|
|
143 |
< |
dAtom->setJx( ji[0] ); |
144 |
< |
dAtom->setJy( ji[1] ); |
145 |
< |
dAtom->setJz( ji[2] ); |
168 |
< |
} |
169 |
< |
|
143 |
> |
dAtom->setJ( ji ); |
144 |
> |
dAtom->setA( A ); |
145 |
> |
} |
146 |
|
} |
147 |
|
} |
148 |
|
} |
149 |
+ |
|
150 |
|
// Scale the box after all the positions have been moved: |
151 |
|
|
152 |
< |
cerr << "eta = " << eta |
153 |
< |
<< "; exp(dt*eta) = " << exp(eta*dt) << "\n"; |
154 |
< |
|
155 |
< |
info->scaleBox(exp(dt*eta)); |
152 |
> |
scaleFactor = exp(dt*eta); |
153 |
> |
|
154 |
> |
if (scaleFactor > 1.1 || scaleFactor < 0.9) { |
155 |
> |
sprintf( painCave.errMsg, |
156 |
> |
"NPTi error: Attempting a Box scaling of more than 10 percent" |
157 |
> |
" check your tauBarostat, as it is probably too small!\n" |
158 |
> |
" eta = %lf, scaleFactor = %lf\n", eta, scaleFactor |
159 |
> |
); |
160 |
> |
painCave.isFatal = 1; |
161 |
> |
simError(); |
162 |
> |
} else { |
163 |
> |
info->scaleBox(exp(dt*eta)); |
164 |
> |
} |
165 |
|
} |
166 |
|
|
167 |
< |
void NPTi::moveB( void ){ |
168 |
< |
int i,j,k; |
183 |
< |
int atomIndex; |
167 |
> |
template<typename T> void NPTim<T>::moveB( void ){ |
168 |
> |
int i, j; |
169 |
|
DirectionalAtom* dAtom; |
170 |
< |
double Tb[3]; |
171 |
< |
double ji[3]; |
170 |
> |
double Tb[3], ji[3]; |
171 |
> |
double vel[3], frc[3]; |
172 |
> |
double mass; |
173 |
> |
|
174 |
|
double instaTemp, instaPress, instaVol; |
175 |
|
double tt2, tb2; |
176 |
< |
|
176 |
> |
|
177 |
|
tt2 = tauThermostat * tauThermostat; |
178 |
|
tb2 = tauBarostat * tauBarostat; |
179 |
|
|
186 |
|
(p_convert*NkBT*tb2)); |
187 |
|
|
188 |
|
for( i=0; i<nAtoms; i++ ){ |
202 |
– |
atomIndex = i * 3; |
189 |
|
|
190 |
+ |
atoms[i]->getVel( vel ); |
191 |
+ |
atoms[i]->getFrc( frc ); |
192 |
+ |
|
193 |
+ |
mass = atoms[i]->getMass(); |
194 |
+ |
|
195 |
|
// velocity half step |
196 |
< |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
197 |
< |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
207 |
< |
vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert |
208 |
< |
- vel[j]*(chi+eta)); |
196 |
> |
for (j=0; j < 3; j++) |
197 |
> |
vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*(chi+eta)); |
198 |
|
|
199 |
+ |
atoms[i]->setVel( vel ); |
200 |
+ |
|
201 |
|
if( atoms[i]->isDirectional() ){ |
202 |
|
|
203 |
|
dAtom = (DirectionalAtom *)atoms[i]; |
204 |
|
|
205 |
< |
// get and convert the torque to body frame |
205 |
> |
// get and convert the torque to body frame |
206 |
|
|
207 |
< |
Tb[0] = dAtom->getTx(); |
217 |
< |
Tb[1] = dAtom->getTy(); |
218 |
< |
Tb[2] = dAtom->getTz(); |
219 |
< |
|
207 |
> |
dAtom->getTrq( Tb ); |
208 |
|
dAtom->lab2Body( Tb ); |
209 |
|
|
210 |
< |
// get the angular momentum, and complete the angular momentum |
223 |
< |
// half step |
210 |
> |
// get the angular momentum, and propagate a half step |
211 |
|
|
212 |
< |
ji[0] = dAtom->getJx(); |
226 |
< |
ji[1] = dAtom->getJy(); |
227 |
< |
ji[2] = dAtom->getJz(); |
212 |
> |
dAtom->getJ( ji ); |
213 |
|
|
214 |
< |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
215 |
< |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
231 |
< |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
214 |
> |
for (j=0; j < 3; j++) |
215 |
> |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
216 |
|
|
217 |
< |
dAtom->setJx( ji[0] ); |
234 |
< |
dAtom->setJy( ji[1] ); |
235 |
< |
dAtom->setJz( ji[2] ); |
217 |
> |
dAtom->setJ( ji ); |
218 |
|
} |
219 |
|
} |
220 |
|
} |
221 |
|
|
222 |
< |
int NPTi::readyCheck() { |
222 |
> |
template<typename T> void NPTim<T>::resetIntegrator() { |
223 |
> |
chi = 0.0; |
224 |
> |
eta = 0.0; |
225 |
> |
} |
226 |
> |
|
227 |
> |
template<typename T> int NPTim<T>::readyCheck() { |
228 |
> |
|
229 |
> |
//check parent's readyCheck() first |
230 |
> |
if (T::readyCheck() == -1) |
231 |
> |
return -1; |
232 |
|
|
233 |
|
// First check to see if we have a target temperature. |
234 |
|
// Not having one is fatal. |
235 |
|
|
236 |
|
if (!have_target_temp) { |
237 |
|
sprintf( painCave.errMsg, |
238 |
< |
"NPTi error: You can't use the NPTi integrator\n" |
238 |
> |
"NPTim error: You can't use the NPTim integrator\n" |
239 |
|
" without a targetTemp!\n" |
240 |
|
); |
241 |
|
painCave.isFatal = 1; |
245 |
|
|
246 |
|
if (!have_target_pressure) { |
247 |
|
sprintf( painCave.errMsg, |
248 |
< |
"NPTi error: You can't use the NPTi integrator\n" |
248 |
> |
"NPTim error: You can't use the NPTim integrator\n" |
249 |
|
" without a targetPressure!\n" |
250 |
|
); |
251 |
|
painCave.isFatal = 1; |
257 |
|
|
258 |
|
if (!have_tau_thermostat) { |
259 |
|
sprintf( painCave.errMsg, |
260 |
< |
"NPTi error: If you use the NPTi\n" |
260 |
> |
"NPTim error: If you use the NPTim\n" |
261 |
|
" integrator, you must set tauThermostat.\n"); |
262 |
|
painCave.isFatal = 1; |
263 |
|
simError(); |
268 |
|
|
269 |
|
if (!have_tau_barostat) { |
270 |
|
sprintf( painCave.errMsg, |
271 |
< |
"NPTi error: If you use the NPTi\n" |
271 |
> |
"NPTim error: If you use the NPTim\n" |
272 |
|
" integrator, you must set tauBarostat.\n"); |
273 |
|
painCave.isFatal = 1; |
274 |
|
simError(); |