| 1 |
|
#include <cmath> |
| 2 |
|
#include "Atom.hpp" |
| 3 |
+ |
#include "Molecule.hpp" |
| 4 |
|
#include "SRI.hpp" |
| 5 |
|
#include "AbstractClasses.hpp" |
| 6 |
|
#include "SimInfo.hpp" |
| 24 |
|
// The NPTim variant scales the molecular center-of-mass coordinates |
| 25 |
|
// instead of the atomic coordinates |
| 26 |
|
|
| 27 |
< |
NPTim::NPTim ( SimInfo *theInfo, ForceFields* the_ff): |
| 28 |
< |
Integrator( theInfo, the_ff ) |
| 27 |
> |
template<typename T> NPTim<T>::NPTim ( SimInfo *theInfo, ForceFields* the_ff): |
| 28 |
> |
T( theInfo, the_ff ) |
| 29 |
|
{ |
| 30 |
|
chi = 0.0; |
| 31 |
|
eta = 0.0; |
| 35 |
|
have_target_pressure = 0; |
| 36 |
|
} |
| 37 |
|
|
| 38 |
< |
void NPTim::moveA() { |
| 38 |
> |
template<typename T> void NPTim<T>::moveA() { |
| 39 |
|
|
| 40 |
< |
int i,j,k; |
| 40 |
< |
int nInMol, aMatIndex; |
| 40 |
> |
int i, j, k; |
| 41 |
|
DirectionalAtom* dAtom; |
| 42 |
< |
Atom** theAtoms; |
| 43 |
< |
Molecule** myMols; |
| 44 |
< |
double Tb[3]; |
| 45 |
< |
double ji[3]; |
| 46 |
< |
double rc[3]; |
| 47 |
< |
double mass; |
| 48 |
< |
double rx, ry, rz, vx, vy, vz, fx, fy, fz; |
| 42 |
> |
double Tb[3], ji[3]; |
| 43 |
> |
double A[3][3], I[3][3]; |
| 44 |
> |
double angle, mass; |
| 45 |
> |
double vel[3], pos[3], frc[3]; |
| 46 |
> |
|
| 47 |
> |
double rj[3]; |
| 48 |
|
double instaTemp, instaPress, instaVol; |
| 49 |
< |
double tt2, tb2; |
| 51 |
< |
double angle; |
| 49 |
> |
double tt2, tb2, scaleFactor; |
| 50 |
|
|
| 51 |
+ |
int nInMol; |
| 52 |
+ |
double rc[3]; |
| 53 |
+ |
|
| 54 |
|
nMols = info->n_mol; |
| 55 |
< |
myMols = info->molecules; |
| 55 |
> |
myMolecules = info->molecules; |
| 56 |
|
|
| 57 |
|
tt2 = tauThermostat * tauThermostat; |
| 58 |
|
tb2 = tauBarostat * tauBarostat; |
| 69 |
|
|
| 70 |
|
for( i = 0; i < nMols; i++) { |
| 71 |
|
|
| 72 |
< |
myMols[i].getCOM(rc); |
| 72 |
> |
myMolecules[i].getCOM(rc); |
| 73 |
|
|
| 74 |
< |
nInMol = myMols[i]->getNAtoms(); |
| 75 |
< |
theAtoms = myMols[i]->getMyAtoms(); |
| 74 |
> |
nInMol = myMolecules[i].getNAtoms(); |
| 75 |
> |
myAtoms = myMolecules[i].getMyAtoms(); |
| 76 |
|
|
| 77 |
|
// find the minimum image coordinates of the molecular centers of mass: |
| 78 |
|
|
| 80 |
|
|
| 81 |
|
for (j = 0; j < nInMol; j++) { |
| 82 |
|
|
| 83 |
< |
if(theAtoms[j] != NULL) { |
| 83 |
> |
if(myAtoms[j] != NULL) { |
| 84 |
|
|
| 85 |
< |
aMatIndex = 9 * theAtoms[j]->getIndex(); |
| 86 |
< |
|
| 87 |
< |
mass = theAtoms[j]->getMass(); |
| 87 |
< |
|
| 88 |
< |
vx = theAtoms[j]->get_vx(); |
| 89 |
< |
vy = theAtoms[j]->get_vy(); |
| 90 |
< |
vz = theAtoms[j]->get_vz(); |
| 91 |
< |
|
| 92 |
< |
fx = theAtoms[j]->getFx(); |
| 93 |
< |
fy = theAtoms[j]->getFy(); |
| 94 |
< |
fz = theAtoms[j]->getFz(); |
| 85 |
> |
myAtoms[j]->getVel( vel ); |
| 86 |
> |
myAtoms[j]->getPos( pos ); |
| 87 |
> |
myAtoms[j]->getFrc( frc ); |
| 88 |
|
|
| 89 |
< |
rx = theAtoms[j]->getX(); |
| 97 |
< |
ry = theAtoms[j]->getY(); |
| 98 |
< |
rz = theAtoms[j]->getZ(); |
| 89 |
> |
mass = myAtoms[j]->getMass(); |
| 90 |
|
|
| 91 |
< |
// velocity half step |
| 91 |
> |
for (k=0; k < 3; k++) |
| 92 |
> |
vel[k] += dt2 * ((frc[k] / mass ) * eConvert - vel[k]*(chi+eta)); |
| 93 |
|
|
| 94 |
< |
vx += dt2 * ((fx / mass)*eConvert - vx*(chi+eta)); |
| 103 |
< |
vy += dt2 * ((fy / mass)*eConvert - vy*(chi+eta)); |
| 104 |
< |
vz += dt2 * ((fz / mass)*eConvert - vz*(chi+eta)); |
| 94 |
> |
myAtoms[j]->setVel( vel ); |
| 95 |
|
|
| 96 |
< |
// position whole step |
| 96 |
> |
for (k = 0; k < 3; k++) |
| 97 |
> |
pos[k] += dt * (vel[k] + eta*rc[k]); |
| 98 |
|
|
| 99 |
< |
rx += dt*(vx + eta*rc[0]); |
| 109 |
< |
ry += dt*(vy + eta*rc[1]); |
| 110 |
< |
rz += dt*(vz + eta*rc[2]); |
| 111 |
< |
|
| 112 |
< |
theAtoms[j]->set_vx(vx); |
| 113 |
< |
theAtoms[j]->set_vy(vy); |
| 114 |
< |
theAtoms[j]->set_vz(vz); |
| 99 |
> |
myAtoms[j]->setPos( pos ); |
| 100 |
|
|
| 101 |
< |
theAtoms[j]->setX(rx); |
| 117 |
< |
theAtoms[j]->setY(ry); |
| 118 |
< |
theAtoms[j]->setZ(rz); |
| 101 |
> |
if( myAtoms[j]->isDirectional() ){ |
| 102 |
|
|
| 103 |
< |
if( theAtoms[j]->isDirectional() ){ |
| 121 |
< |
|
| 122 |
< |
dAtom = (DirectionalAtom *)theAtoms[j]; |
| 103 |
> |
dAtom = (DirectionalAtom *)myAtoms[j]; |
| 104 |
|
|
| 105 |
|
// get and convert the torque to body frame |
| 106 |
< |
|
| 107 |
< |
Tb[0] = dAtom->getTx(); |
| 127 |
< |
Tb[1] = dAtom->getTy(); |
| 128 |
< |
Tb[2] = dAtom->getTz(); |
| 129 |
< |
|
| 106 |
> |
|
| 107 |
> |
dAtom->getTrq( Tb ); |
| 108 |
|
dAtom->lab2Body( Tb ); |
| 109 |
< |
|
| 109 |
> |
|
| 110 |
|
// get the angular momentum, and propagate a half step |
| 111 |
|
|
| 112 |
< |
ji[0] = dAtom->getJx(); |
| 113 |
< |
ji[1] = dAtom->getJy(); |
| 114 |
< |
ji[2] = dAtom->getJz(); |
| 112 |
> |
dAtom->getJ( ji ); |
| 113 |
> |
|
| 114 |
> |
for (k=0; k < 3; k++) |
| 115 |
> |
ji[k] += dt2 * (Tb[k] * eConvert - ji[k]*chi); |
| 116 |
|
|
| 138 |
– |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
| 139 |
– |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
| 140 |
– |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
| 141 |
– |
|
| 117 |
|
// use the angular velocities to propagate the rotation matrix a |
| 118 |
|
// full time step |
| 119 |
|
|
| 120 |
+ |
dAtom->getA(A); |
| 121 |
+ |
dAtom->getI(I); |
| 122 |
+ |
|
| 123 |
|
// rotate about the x-axis |
| 124 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
| 125 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
| 124 |
> |
angle = dt2 * ji[0] / I[0][0]; |
| 125 |
> |
this->rotate( 1, 2, angle, ji, A ); |
| 126 |
|
|
| 127 |
|
// rotate about the y-axis |
| 128 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
| 129 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
| 128 |
> |
angle = dt2 * ji[1] / I[1][1]; |
| 129 |
> |
this->rotate( 2, 0, angle, ji, A ); |
| 130 |
|
|
| 131 |
|
// rotate about the z-axis |
| 132 |
< |
angle = dt * ji[2] / dAtom->getIzz(); |
| 133 |
< |
this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); |
| 132 |
> |
angle = dt * ji[2] / I[2][2]; |
| 133 |
> |
this->rotate( 0, 1, angle, ji, A); |
| 134 |
|
|
| 135 |
|
// rotate about the y-axis |
| 136 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
| 137 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
| 136 |
> |
angle = dt2 * ji[1] / I[1][1]; |
| 137 |
> |
this->rotate( 2, 0, angle, ji, A ); |
| 138 |
|
|
| 139 |
|
// rotate about the x-axis |
| 140 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
| 141 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
| 140 |
> |
angle = dt2 * ji[0] / I[0][0]; |
| 141 |
> |
this->rotate( 1, 2, angle, ji, A ); |
| 142 |
|
|
| 143 |
< |
dAtom->setJx( ji[0] ); |
| 144 |
< |
dAtom->setJy( ji[1] ); |
| 145 |
< |
dAtom->setJz( ji[2] ); |
| 168 |
< |
} |
| 169 |
< |
|
| 143 |
> |
dAtom->setJ( ji ); |
| 144 |
> |
dAtom->setA( A ); |
| 145 |
> |
} |
| 146 |
|
} |
| 147 |
|
} |
| 148 |
|
} |
| 149 |
+ |
|
| 150 |
|
// Scale the box after all the positions have been moved: |
| 151 |
|
|
| 152 |
< |
cerr << "eta = " << eta |
| 153 |
< |
<< "; exp(dt*eta) = " << exp(eta*dt) << "\n"; |
| 154 |
< |
|
| 155 |
< |
info->scaleBox(exp(dt*eta)); |
| 152 |
> |
scaleFactor = exp(dt*eta); |
| 153 |
> |
|
| 154 |
> |
if (scaleFactor > 1.1 || scaleFactor < 0.9) { |
| 155 |
> |
sprintf( painCave.errMsg, |
| 156 |
> |
"NPTi error: Attempting a Box scaling of more than 10 percent" |
| 157 |
> |
" check your tauBarostat, as it is probably too small!\n" |
| 158 |
> |
" eta = %lf, scaleFactor = %lf\n", eta, scaleFactor |
| 159 |
> |
); |
| 160 |
> |
painCave.isFatal = 1; |
| 161 |
> |
simError(); |
| 162 |
> |
} else { |
| 163 |
> |
info->scaleBox(exp(dt*eta)); |
| 164 |
> |
} |
| 165 |
|
} |
| 166 |
|
|
| 167 |
< |
void NPTi::moveB( void ){ |
| 168 |
< |
int i,j,k; |
| 183 |
< |
int atomIndex; |
| 167 |
> |
template<typename T> void NPTim<T>::moveB( void ){ |
| 168 |
> |
int i, j; |
| 169 |
|
DirectionalAtom* dAtom; |
| 170 |
< |
double Tb[3]; |
| 171 |
< |
double ji[3]; |
| 170 |
> |
double Tb[3], ji[3]; |
| 171 |
> |
double vel[3], frc[3]; |
| 172 |
> |
double mass; |
| 173 |
> |
|
| 174 |
|
double instaTemp, instaPress, instaVol; |
| 175 |
|
double tt2, tb2; |
| 176 |
< |
|
| 176 |
> |
|
| 177 |
|
tt2 = tauThermostat * tauThermostat; |
| 178 |
|
tb2 = tauBarostat * tauBarostat; |
| 179 |
|
|
| 186 |
|
(p_convert*NkBT*tb2)); |
| 187 |
|
|
| 188 |
|
for( i=0; i<nAtoms; i++ ){ |
| 202 |
– |
atomIndex = i * 3; |
| 189 |
|
|
| 190 |
+ |
atoms[i]->getVel( vel ); |
| 191 |
+ |
atoms[i]->getFrc( frc ); |
| 192 |
+ |
|
| 193 |
+ |
mass = atoms[i]->getMass(); |
| 194 |
+ |
|
| 195 |
|
// velocity half step |
| 196 |
< |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 197 |
< |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 207 |
< |
vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert |
| 208 |
< |
- vel[j]*(chi+eta)); |
| 196 |
> |
for (j=0; j < 3; j++) |
| 197 |
> |
vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*(chi+eta)); |
| 198 |
|
|
| 199 |
+ |
atoms[i]->setVel( vel ); |
| 200 |
+ |
|
| 201 |
|
if( atoms[i]->isDirectional() ){ |
| 202 |
|
|
| 203 |
|
dAtom = (DirectionalAtom *)atoms[i]; |
| 204 |
|
|
| 205 |
< |
// get and convert the torque to body frame |
| 205 |
> |
// get and convert the torque to body frame |
| 206 |
|
|
| 207 |
< |
Tb[0] = dAtom->getTx(); |
| 217 |
< |
Tb[1] = dAtom->getTy(); |
| 218 |
< |
Tb[2] = dAtom->getTz(); |
| 219 |
< |
|
| 207 |
> |
dAtom->getTrq( Tb ); |
| 208 |
|
dAtom->lab2Body( Tb ); |
| 209 |
|
|
| 210 |
< |
// get the angular momentum, and complete the angular momentum |
| 223 |
< |
// half step |
| 210 |
> |
// get the angular momentum, and propagate a half step |
| 211 |
|
|
| 212 |
< |
ji[0] = dAtom->getJx(); |
| 226 |
< |
ji[1] = dAtom->getJy(); |
| 227 |
< |
ji[2] = dAtom->getJz(); |
| 212 |
> |
dAtom->getJ( ji ); |
| 213 |
|
|
| 214 |
< |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
| 215 |
< |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
| 231 |
< |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
| 214 |
> |
for (j=0; j < 3; j++) |
| 215 |
> |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
| 216 |
|
|
| 217 |
< |
dAtom->setJx( ji[0] ); |
| 234 |
< |
dAtom->setJy( ji[1] ); |
| 235 |
< |
dAtom->setJz( ji[2] ); |
| 217 |
> |
dAtom->setJ( ji ); |
| 218 |
|
} |
| 219 |
|
} |
| 220 |
|
} |
| 221 |
|
|
| 222 |
< |
int NPTi::readyCheck() { |
| 222 |
> |
template<typename T> int NPTim<T>::readyCheck() { |
| 223 |
> |
|
| 224 |
> |
//check parent's readyCheck() first |
| 225 |
> |
if (T::readyCheck() == -1) |
| 226 |
> |
return -1; |
| 227 |
|
|
| 228 |
|
// First check to see if we have a target temperature. |
| 229 |
|
// Not having one is fatal. |
| 230 |
|
|
| 231 |
|
if (!have_target_temp) { |
| 232 |
|
sprintf( painCave.errMsg, |
| 233 |
< |
"NPTi error: You can't use the NPTi integrator\n" |
| 233 |
> |
"NPTim error: You can't use the NPTim integrator\n" |
| 234 |
|
" without a targetTemp!\n" |
| 235 |
|
); |
| 236 |
|
painCave.isFatal = 1; |
| 240 |
|
|
| 241 |
|
if (!have_target_pressure) { |
| 242 |
|
sprintf( painCave.errMsg, |
| 243 |
< |
"NPTi error: You can't use the NPTi integrator\n" |
| 243 |
> |
"NPTim error: You can't use the NPTim integrator\n" |
| 244 |
|
" without a targetPressure!\n" |
| 245 |
|
); |
| 246 |
|
painCave.isFatal = 1; |
| 252 |
|
|
| 253 |
|
if (!have_tau_thermostat) { |
| 254 |
|
sprintf( painCave.errMsg, |
| 255 |
< |
"NPTi error: If you use the NPTi\n" |
| 255 |
> |
"NPTim error: If you use the NPTim\n" |
| 256 |
|
" integrator, you must set tauThermostat.\n"); |
| 257 |
|
painCave.isFatal = 1; |
| 258 |
|
simError(); |
| 263 |
|
|
| 264 |
|
if (!have_tau_barostat) { |
| 265 |
|
sprintf( painCave.errMsg, |
| 266 |
< |
"NPTi error: If you use the NPTi\n" |
| 266 |
> |
"NPTim error: If you use the NPTim\n" |
| 267 |
|
" integrator, you must set tauBarostat.\n"); |
| 268 |
|
painCave.isFatal = 1; |
| 269 |
|
simError(); |