| 1 | #include "Atom.hpp" | 
| 2 | #include "SRI.hpp" | 
| 3 | #include "AbstractClasses.hpp" | 
| 4 | #include "SimInfo.hpp" | 
| 5 | #include "ForceFields.hpp" | 
| 6 | #include "Thermo.hpp" | 
| 7 | #include "ReadWrite.hpp" | 
| 8 | #include "Integrator.hpp" | 
| 9 | #include "simError.h" | 
| 10 |  | 
| 11 |  | 
| 12 | // Basic isotropic thermostating and barostating via the Melchionna | 
| 13 | // modification of the Hoover algorithm: | 
| 14 | // | 
| 15 | //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, | 
| 16 | //       Molec. Phys., 78, 533. | 
| 17 | // | 
| 18 | //           and | 
| 19 | // | 
| 20 | //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 21 |  | 
| 22 | NPTi::NPTi ( SimInfo *theInfo, ForceFields* the_ff): | 
| 23 | Integrator( theInfo, the_ff ) | 
| 24 | { | 
| 25 | chi = 0.0; | 
| 26 | eta = 0.0; | 
| 27 | have_tau_thermostat = 0; | 
| 28 | have_tau_barostat = 0; | 
| 29 | have_target_temp = 0; | 
| 30 | have_target_pressure = 0; | 
| 31 | } | 
| 32 |  | 
| 33 | void NPTi::moveA() { | 
| 34 |  | 
| 35 | int i,j,k; | 
| 36 | int atomIndex, aMatIndex; | 
| 37 | DirectionalAtom* dAtom; | 
| 38 | double Tb[3]; | 
| 39 | double ji[3]; | 
| 40 | double rj[3]; | 
| 41 | double instaTemp, instaPress, instaVol; | 
| 42 | double tt2, tb2; | 
| 43 | double angle; | 
| 44 |  | 
| 45 | tt2 = tauThermostat * tauThermostat; | 
| 46 | tb2 = tauBarostat * tauBarostat; | 
| 47 |  | 
| 48 | instaTemp = tStats->getTemperature(); | 
| 49 | instaPress = tStats->getPressure(); | 
| 50 | instaVol = tStats->getVolume(); | 
| 51 |  | 
| 52 | // first evolve chi a half step | 
| 53 |  | 
| 54 | chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; | 
| 55 | eta += dt2 * ( instaVol * (instaPress - targetPressure) / (NkBT*tb2)); | 
| 56 |  | 
| 57 | for( i=0; i<nAtoms; i++ ){ | 
| 58 | atomIndex = i * 3; | 
| 59 | aMatIndex = i * 9; | 
| 60 |  | 
| 61 | // velocity half step | 
| 62 | for( j=atomIndex; j<(atomIndex+3); j++ ) | 
| 63 | vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert | 
| 64 | - vel[j]*(chi+eta)); | 
| 65 |  | 
| 66 | // position whole step | 
| 67 |  | 
| 68 | for( j=atomIndex; j<(atomIndex+3); j=j+3 ) { | 
| 69 | rj[0] = pos[j]; | 
| 70 | rj[1] = pos[j+1]; | 
| 71 | rj[2] = pos[j+2]; | 
| 72 |  | 
| 73 | info->wrapVector(rj); | 
| 74 |  | 
| 75 | pos[j] += dt * (vel[j] + eta*rj[0]); | 
| 76 | pos[j+1] += dt * (vel[j+1] + eta*rj[1]); | 
| 77 | pos[j+2] += dt * (vel[j+2] + eta*rj[2]); | 
| 78 | } | 
| 79 |  | 
| 80 | // Scale the box after all the positions have been moved: | 
| 81 |  | 
| 82 | info->scaleBox(dt*eta); | 
| 83 |  | 
| 84 | if( atoms[i]->isDirectional() ){ | 
| 85 |  | 
| 86 | dAtom = (DirectionalAtom *)atoms[i]; | 
| 87 |  | 
| 88 | // get and convert the torque to body frame | 
| 89 |  | 
| 90 | Tb[0] = dAtom->getTx(); | 
| 91 | Tb[1] = dAtom->getTy(); | 
| 92 | Tb[2] = dAtom->getTz(); | 
| 93 |  | 
| 94 | dAtom->lab2Body( Tb ); | 
| 95 |  | 
| 96 | // get the angular momentum, and propagate a half step | 
| 97 |  | 
| 98 | ji[0] = dAtom->getJx(); | 
| 99 | ji[1] = dAtom->getJy(); | 
| 100 | ji[2] = dAtom->getJz(); | 
| 101 |  | 
| 102 | ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); | 
| 103 | ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); | 
| 104 | ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); | 
| 105 |  | 
| 106 | // use the angular velocities to propagate the rotation matrix a | 
| 107 | // full time step | 
| 108 |  | 
| 109 | // rotate about the x-axis | 
| 110 | angle = dt2 * ji[0] / dAtom->getIxx(); | 
| 111 | this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); | 
| 112 |  | 
| 113 | // rotate about the y-axis | 
| 114 | angle = dt2 * ji[1] / dAtom->getIyy(); | 
| 115 | this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); | 
| 116 |  | 
| 117 | // rotate about the z-axis | 
| 118 | angle = dt * ji[2] / dAtom->getIzz(); | 
| 119 | this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); | 
| 120 |  | 
| 121 | // rotate about the y-axis | 
| 122 | angle = dt2 * ji[1] / dAtom->getIyy(); | 
| 123 | this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); | 
| 124 |  | 
| 125 | // rotate about the x-axis | 
| 126 | angle = dt2 * ji[0] / dAtom->getIxx(); | 
| 127 | this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); | 
| 128 |  | 
| 129 | dAtom->setJx( ji[0] ); | 
| 130 | dAtom->setJy( ji[1] ); | 
| 131 | dAtom->setJz( ji[2] ); | 
| 132 | } | 
| 133 |  | 
| 134 | } | 
| 135 | } | 
| 136 |  | 
| 137 | void NPTi::moveB( void ){ | 
| 138 | int i,j,k; | 
| 139 | int atomIndex; | 
| 140 | DirectionalAtom* dAtom; | 
| 141 | double Tb[3]; | 
| 142 | double ji[3]; | 
| 143 | double instaTemp, instaPress, instaVol; | 
| 144 | double tt2, tb2; | 
| 145 |  | 
| 146 | tt2 = tauThermostat * tauThermostat; | 
| 147 | tb2 = tauBarostat * tauBarostat; | 
| 148 |  | 
| 149 | instaTemp = tStats->getTemperature(); | 
| 150 | instaPress = tStats->getPressure(); | 
| 151 | instaVol = tStats->getVolume(); | 
| 152 |  | 
| 153 | chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; | 
| 154 | eta += dt2 * ( instaVol * (instaPress - targetPressure) / (NkBT*tb2)); | 
| 155 |  | 
| 156 | for( i=0; i<nAtoms; i++ ){ | 
| 157 | atomIndex = i * 3; | 
| 158 |  | 
| 159 | // velocity half step | 
| 160 | for( j=atomIndex; j<(atomIndex+3); j++ ) | 
| 161 | for( j=atomIndex; j<(atomIndex+3); j++ ) | 
| 162 | vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert | 
| 163 | - vel[j]*(chi+eta)); | 
| 164 |  | 
| 165 | if( atoms[i]->isDirectional() ){ | 
| 166 |  | 
| 167 | dAtom = (DirectionalAtom *)atoms[i]; | 
| 168 |  | 
| 169 | // get and convert the torque to body frame | 
| 170 |  | 
| 171 | Tb[0] = dAtom->getTx(); | 
| 172 | Tb[1] = dAtom->getTy(); | 
| 173 | Tb[2] = dAtom->getTz(); | 
| 174 |  | 
| 175 | dAtom->lab2Body( Tb ); | 
| 176 |  | 
| 177 | // get the angular momentum, and complete the angular momentum | 
| 178 | // half step | 
| 179 |  | 
| 180 | ji[0] = dAtom->getJx(); | 
| 181 | ji[1] = dAtom->getJy(); | 
| 182 | ji[2] = dAtom->getJz(); | 
| 183 |  | 
| 184 | ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); | 
| 185 | ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); | 
| 186 | ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); | 
| 187 |  | 
| 188 | dAtom->setJx( ji[0] ); | 
| 189 | dAtom->setJy( ji[1] ); | 
| 190 | dAtom->setJz( ji[2] ); | 
| 191 | } | 
| 192 | } | 
| 193 | } | 
| 194 |  | 
| 195 | int NPTi::readyCheck() { | 
| 196 |  | 
| 197 | // First check to see if we have a target temperature. | 
| 198 | // Not having one is fatal. | 
| 199 |  | 
| 200 | if (!have_target_temp) { | 
| 201 | sprintf( painCave.errMsg, | 
| 202 | "NPTi error: You can't use the NPTi integrator\n" | 
| 203 | "   without a targetTemp!\n" | 
| 204 | ); | 
| 205 | painCave.isFatal = 1; | 
| 206 | simError(); | 
| 207 | return -1; | 
| 208 | } | 
| 209 |  | 
| 210 | if (!have_target_pressure) { | 
| 211 | sprintf( painCave.errMsg, | 
| 212 | "NPTi error: You can't use the NPTi integrator\n" | 
| 213 | "   without a targetPressure!\n" | 
| 214 | ); | 
| 215 | painCave.isFatal = 1; | 
| 216 | simError(); | 
| 217 | return -1; | 
| 218 | } | 
| 219 |  | 
| 220 | // We must set tauThermostat. | 
| 221 |  | 
| 222 | if (!have_tau_thermostat) { | 
| 223 | sprintf( painCave.errMsg, | 
| 224 | "NPTi error: If you use the NPTi\n" | 
| 225 | "   integrator, you must set tauThermostat.\n"); | 
| 226 | painCave.isFatal = 1; | 
| 227 | simError(); | 
| 228 | return -1; | 
| 229 | } | 
| 230 |  | 
| 231 | // We must set tauBarostat. | 
| 232 |  | 
| 233 | if (!have_tau_barostat) { | 
| 234 | sprintf( painCave.errMsg, | 
| 235 | "NPTi error: If you use the NPTi\n" | 
| 236 | "   integrator, you must set tauBarostat.\n"); | 
| 237 | painCave.isFatal = 1; | 
| 238 | simError(); | 
| 239 | return -1; | 
| 240 | } | 
| 241 |  | 
| 242 | // We need NkBT a lot, so just set it here: | 
| 243 |  | 
| 244 | NkBT = (double)info->ndf * kB * targetTemp; | 
| 245 |  | 
| 246 | return 1; | 
| 247 | } |