| 1 |
#include <cmath> |
| 2 |
#include "Atom.hpp" |
| 3 |
#include "SRI.hpp" |
| 4 |
#include "AbstractClasses.hpp" |
| 5 |
#include "SimInfo.hpp" |
| 6 |
#include "ForceFields.hpp" |
| 7 |
#include "Thermo.hpp" |
| 8 |
#include "ReadWrite.hpp" |
| 9 |
#include "Integrator.hpp" |
| 10 |
#include "simError.h" |
| 11 |
|
| 12 |
#ifdef IS_MPI |
| 13 |
#include "mpiSimulation.hpp" |
| 14 |
#endif |
| 15 |
|
| 16 |
|
| 17 |
// Basic isotropic thermostating and barostating via the Melchionna |
| 18 |
// modification of the Hoover algorithm: |
| 19 |
// |
| 20 |
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
| 21 |
// Molec. Phys., 78, 533. |
| 22 |
// |
| 23 |
// and |
| 24 |
// |
| 25 |
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
| 26 |
|
| 27 |
template<typename T> NPTi<T>::NPTi ( SimInfo *theInfo, ForceFields* the_ff): |
| 28 |
T( theInfo, the_ff ) |
| 29 |
{ |
| 30 |
chi = 0.0; |
| 31 |
eta = 0.0; |
| 32 |
integralOfChidt = 0.0; |
| 33 |
have_tau_thermostat = 0; |
| 34 |
have_tau_barostat = 0; |
| 35 |
have_target_temp = 0; |
| 36 |
have_target_pressure = 0; |
| 37 |
have_chi_tolerance = 0; |
| 38 |
have_eta_tolerance = 0; |
| 39 |
have_pos_iter_tolerance = 0; |
| 40 |
|
| 41 |
oldPos = new double[3*nAtoms]; |
| 42 |
oldVel = new double[3*nAtoms]; |
| 43 |
oldJi = new double[3*nAtoms]; |
| 44 |
#ifdef IS_MPI |
| 45 |
Nparticles = mpiSim->getTotAtoms(); |
| 46 |
#else |
| 47 |
Nparticles = theInfo->n_atoms; |
| 48 |
#endif |
| 49 |
|
| 50 |
} |
| 51 |
|
| 52 |
template<typename T> NPTi<T>::~NPTi() { |
| 53 |
delete[] oldPos; |
| 54 |
delete[] oldVel; |
| 55 |
delete[] oldJi; |
| 56 |
} |
| 57 |
|
| 58 |
template<typename T> void NPTi<T>::moveA() { |
| 59 |
|
| 60 |
//new version of NPTi |
| 61 |
int i, j, k; |
| 62 |
DirectionalAtom* dAtom; |
| 63 |
double Tb[3], ji[3]; |
| 64 |
double A[3][3], I[3][3]; |
| 65 |
double angle, mass; |
| 66 |
double vel[3], pos[3], frc[3]; |
| 67 |
|
| 68 |
double rj[3]; |
| 69 |
double instaTemp, instaPress, instaVol; |
| 70 |
double tt2, tb2, scaleFactor; |
| 71 |
double COM[3]; |
| 72 |
|
| 73 |
tt2 = tauThermostat * tauThermostat; |
| 74 |
tb2 = tauBarostat * tauBarostat; |
| 75 |
|
| 76 |
instaTemp = tStats->getTemperature(); |
| 77 |
instaPress = tStats->getPressure(); |
| 78 |
instaVol = tStats->getVolume(); |
| 79 |
|
| 80 |
tStats->getCOM(COM); |
| 81 |
|
| 82 |
//evolve velocity half step |
| 83 |
for( i=0; i<nAtoms; i++ ){ |
| 84 |
|
| 85 |
atoms[i]->getVel( vel ); |
| 86 |
atoms[i]->getFrc( frc ); |
| 87 |
|
| 88 |
mass = atoms[i]->getMass(); |
| 89 |
|
| 90 |
for (j=0; j < 3; j++) { |
| 91 |
// velocity half step (use chi from previous step here): |
| 92 |
vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*(chi + eta)); |
| 93 |
|
| 94 |
} |
| 95 |
|
| 96 |
atoms[i]->setVel( vel ); |
| 97 |
|
| 98 |
if( atoms[i]->isDirectional() ){ |
| 99 |
|
| 100 |
dAtom = (DirectionalAtom *)atoms[i]; |
| 101 |
|
| 102 |
// get and convert the torque to body frame |
| 103 |
|
| 104 |
dAtom->getTrq( Tb ); |
| 105 |
dAtom->lab2Body( Tb ); |
| 106 |
|
| 107 |
// get the angular momentum, and propagate a half step |
| 108 |
|
| 109 |
dAtom->getJ( ji ); |
| 110 |
|
| 111 |
for (j=0; j < 3; j++) |
| 112 |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
| 113 |
|
| 114 |
// use the angular velocities to propagate the rotation matrix a |
| 115 |
// full time step |
| 116 |
|
| 117 |
dAtom->getA(A); |
| 118 |
dAtom->getI(I); |
| 119 |
|
| 120 |
// rotate about the x-axis |
| 121 |
angle = dt2 * ji[0] / I[0][0]; |
| 122 |
this->rotate( 1, 2, angle, ji, A ); |
| 123 |
|
| 124 |
// rotate about the y-axis |
| 125 |
angle = dt2 * ji[1] / I[1][1]; |
| 126 |
this->rotate( 2, 0, angle, ji, A ); |
| 127 |
|
| 128 |
// rotate about the z-axis |
| 129 |
angle = dt * ji[2] / I[2][2]; |
| 130 |
this->rotate( 0, 1, angle, ji, A); |
| 131 |
|
| 132 |
// rotate about the y-axis |
| 133 |
angle = dt2 * ji[1] / I[1][1]; |
| 134 |
this->rotate( 2, 0, angle, ji, A ); |
| 135 |
|
| 136 |
// rotate about the x-axis |
| 137 |
angle = dt2 * ji[0] / I[0][0]; |
| 138 |
this->rotate( 1, 2, angle, ji, A ); |
| 139 |
|
| 140 |
dAtom->setJ( ji ); |
| 141 |
dAtom->setA( A ); |
| 142 |
} |
| 143 |
} |
| 144 |
|
| 145 |
// evolve chi and eta half step |
| 146 |
|
| 147 |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 148 |
eta += dt2 * ( instaVol * (instaPress - targetPressure) / (p_convert*NkBT*tb2)); |
| 149 |
|
| 150 |
//calculate the integral of chidt |
| 151 |
integralOfChidt += dt2*chi; |
| 152 |
|
| 153 |
//save the old positions |
| 154 |
for(i = 0; i < nAtoms; i++){ |
| 155 |
atoms[i]->getPos(pos); |
| 156 |
for(j = 0; j < 3; j++) |
| 157 |
oldPos[i*3 + j] = pos[j]; |
| 158 |
} |
| 159 |
|
| 160 |
//the first estimation of r(t+dt) is equal to r(t) |
| 161 |
|
| 162 |
for(k = 0; k < 4; k ++){ |
| 163 |
|
| 164 |
for(i =0 ; i < nAtoms; i++){ |
| 165 |
|
| 166 |
atoms[i]->getVel(vel); |
| 167 |
atoms[i]->getPos(pos); |
| 168 |
|
| 169 |
for(j = 0; j < 3; j++) |
| 170 |
rj[j] = (oldPos[i*3 + j] + pos[j])/2 - COM[j]; |
| 171 |
|
| 172 |
for(j = 0; j < 3; j++) |
| 173 |
pos[j] = oldPos[i*3 + j] + dt*(vel[j] + eta*rj[j]); |
| 174 |
|
| 175 |
atoms[i]->setPos( pos ); |
| 176 |
|
| 177 |
} |
| 178 |
|
| 179 |
} |
| 180 |
|
| 181 |
|
| 182 |
// Scale the box after all the positions have been moved: |
| 183 |
|
| 184 |
scaleFactor = exp(dt*eta); |
| 185 |
|
| 186 |
if ((scaleFactor > 1.1) || (scaleFactor < 0.9)) { |
| 187 |
sprintf( painCave.errMsg, |
| 188 |
"NPTi error: Attempting a Box scaling of more than 10 percent" |
| 189 |
" check your tauBarostat, as it is probably too small!\n" |
| 190 |
" eta = %lf, scaleFactor = %lf\n", eta, scaleFactor |
| 191 |
); |
| 192 |
painCave.isFatal = 1; |
| 193 |
simError(); |
| 194 |
} else { |
| 195 |
info->scaleBox(scaleFactor); |
| 196 |
} |
| 197 |
|
| 198 |
} |
| 199 |
|
| 200 |
template<typename T> void NPTi<T>::moveB( void ){ |
| 201 |
|
| 202 |
//new version of NPTi |
| 203 |
int i, j, k; |
| 204 |
DirectionalAtom* dAtom; |
| 205 |
double Tb[3], ji[3]; |
| 206 |
double vel[3], frc[3]; |
| 207 |
double mass; |
| 208 |
|
| 209 |
double instTemp, instPress, instVol; |
| 210 |
double tt2, tb2; |
| 211 |
double oldChi, prevChi; |
| 212 |
double oldEta, preEta; |
| 213 |
|
| 214 |
tt2 = tauThermostat * tauThermostat; |
| 215 |
tb2 = tauBarostat * tauBarostat; |
| 216 |
|
| 217 |
|
| 218 |
// Set things up for the iteration: |
| 219 |
|
| 220 |
oldChi = chi; |
| 221 |
oldEta = eta; |
| 222 |
|
| 223 |
for( i=0; i<nAtoms; i++ ){ |
| 224 |
|
| 225 |
atoms[i]->getVel( vel ); |
| 226 |
|
| 227 |
for (j=0; j < 3; j++) |
| 228 |
oldVel[3*i + j] = vel[j]; |
| 229 |
|
| 230 |
if( atoms[i]->isDirectional() ){ |
| 231 |
|
| 232 |
dAtom = (DirectionalAtom *)atoms[i]; |
| 233 |
|
| 234 |
dAtom->getJ( ji ); |
| 235 |
|
| 236 |
for (j=0; j < 3; j++) |
| 237 |
oldJi[3*i + j] = ji[j]; |
| 238 |
|
| 239 |
} |
| 240 |
} |
| 241 |
|
| 242 |
// do the iteration: |
| 243 |
|
| 244 |
instVol = tStats->getVolume(); |
| 245 |
|
| 246 |
for (k=0; k < 4; k++) { |
| 247 |
|
| 248 |
instTemp = tStats->getTemperature(); |
| 249 |
instPress = tStats->getPressure(); |
| 250 |
|
| 251 |
// evolve chi another half step using the temperature at t + dt/2 |
| 252 |
|
| 253 |
prevChi = chi; |
| 254 |
chi = oldChi + dt2 * ( instTemp / targetTemp - 1.0) / |
| 255 |
(tauThermostat*tauThermostat); |
| 256 |
|
| 257 |
preEta = eta; |
| 258 |
eta = oldEta + dt2 * ( instVol * (instPress - targetPressure) / |
| 259 |
(p_convert*NkBT*tb2)); |
| 260 |
|
| 261 |
|
| 262 |
for( i=0; i<nAtoms; i++ ){ |
| 263 |
|
| 264 |
atoms[i]->getFrc( frc ); |
| 265 |
atoms[i]->getVel(vel); |
| 266 |
|
| 267 |
mass = atoms[i]->getMass(); |
| 268 |
|
| 269 |
// velocity half step |
| 270 |
for (j=0; j < 3; j++) |
| 271 |
vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*(chi + eta)); |
| 272 |
|
| 273 |
atoms[i]->setVel( vel ); |
| 274 |
|
| 275 |
if( atoms[i]->isDirectional() ){ |
| 276 |
|
| 277 |
dAtom = (DirectionalAtom *)atoms[i]; |
| 278 |
|
| 279 |
// get and convert the torque to body frame |
| 280 |
|
| 281 |
dAtom->getTrq( Tb ); |
| 282 |
dAtom->lab2Body( Tb ); |
| 283 |
|
| 284 |
for (j=0; j < 3; j++) |
| 285 |
ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); |
| 286 |
|
| 287 |
dAtom->setJ( ji ); |
| 288 |
} |
| 289 |
} |
| 290 |
|
| 291 |
if (fabs(prevChi - chi) <= chiTolerance && fabs(preEta -eta) <= etaTolerance) |
| 292 |
break; |
| 293 |
} |
| 294 |
|
| 295 |
//calculate integral of chida |
| 296 |
integralOfChidt += dt2*chi; |
| 297 |
|
| 298 |
|
| 299 |
} |
| 300 |
|
| 301 |
template<typename T> void NPTi<T>::resetIntegrator() { |
| 302 |
chi = 0.0; |
| 303 |
eta = 0.0; |
| 304 |
} |
| 305 |
|
| 306 |
template<typename T> int NPTi<T>::readyCheck() { |
| 307 |
|
| 308 |
//check parent's readyCheck() first |
| 309 |
if (T::readyCheck() == -1) |
| 310 |
return -1; |
| 311 |
|
| 312 |
// First check to see if we have a target temperature. |
| 313 |
// Not having one is fatal. |
| 314 |
|
| 315 |
if (!have_target_temp) { |
| 316 |
sprintf( painCave.errMsg, |
| 317 |
"NPTi error: You can't use the NPTi integrator\n" |
| 318 |
" without a targetTemp!\n" |
| 319 |
); |
| 320 |
painCave.isFatal = 1; |
| 321 |
simError(); |
| 322 |
return -1; |
| 323 |
} |
| 324 |
|
| 325 |
if (!have_target_pressure) { |
| 326 |
sprintf( painCave.errMsg, |
| 327 |
"NPTi error: You can't use the NPTi integrator\n" |
| 328 |
" without a targetPressure!\n" |
| 329 |
); |
| 330 |
painCave.isFatal = 1; |
| 331 |
simError(); |
| 332 |
return -1; |
| 333 |
} |
| 334 |
|
| 335 |
// We must set tauThermostat. |
| 336 |
|
| 337 |
if (!have_tau_thermostat) { |
| 338 |
sprintf( painCave.errMsg, |
| 339 |
"NPTi error: If you use the NPTi\n" |
| 340 |
" integrator, you must set tauThermostat.\n"); |
| 341 |
painCave.isFatal = 1; |
| 342 |
simError(); |
| 343 |
return -1; |
| 344 |
} |
| 345 |
|
| 346 |
// We must set tauBarostat. |
| 347 |
|
| 348 |
if (!have_tau_barostat) { |
| 349 |
sprintf( painCave.errMsg, |
| 350 |
"NPTi error: If you use the NPTi\n" |
| 351 |
" integrator, you must set tauBarostat.\n"); |
| 352 |
painCave.isFatal = 1; |
| 353 |
simError(); |
| 354 |
return -1; |
| 355 |
} |
| 356 |
|
| 357 |
if (!have_chi_tolerance) { |
| 358 |
sprintf( painCave.errMsg, |
| 359 |
"NPTi warning: setting chi tolerance to 1e-6\n"); |
| 360 |
chiTolerance = 1e-6; |
| 361 |
have_chi_tolerance = 1; |
| 362 |
painCave.isFatal = 0; |
| 363 |
simError(); |
| 364 |
} |
| 365 |
|
| 366 |
if (!have_eta_tolerance) { |
| 367 |
sprintf( painCave.errMsg, |
| 368 |
"NPTi warning: setting eta tolerance to 1e-6\n"); |
| 369 |
etaTolerance = 1e-6; |
| 370 |
have_eta_tolerance = 1; |
| 371 |
painCave.isFatal = 0; |
| 372 |
simError(); |
| 373 |
} |
| 374 |
// We need NkBT a lot, so just set it here: |
| 375 |
|
| 376 |
NkBT = (double)Nparticles * kB * targetTemp; |
| 377 |
fkBT = (double)info->ndf * kB * targetTemp; |
| 378 |
|
| 379 |
return 1; |
| 380 |
} |
| 381 |
|
| 382 |
template<typename T> double NPTi<T>::getConservedQuantity(void){ |
| 383 |
|
| 384 |
double conservedQuantity; |
| 385 |
double tb2; |
| 386 |
double eta2; |
| 387 |
double E_NPT; |
| 388 |
double U; |
| 389 |
double TS; |
| 390 |
double PV; |
| 391 |
double extra; |
| 392 |
|
| 393 |
U = tStats->getTotalE(); |
| 394 |
|
| 395 |
TS = fkBT * |
| 396 |
(integralOfChidt + tauThermostat * tauThermostat * chi * chi / 2.0) / eConvert; |
| 397 |
|
| 398 |
PV = (targetPressure * tStats->getVolume() / p_convert) / eConvert; |
| 399 |
|
| 400 |
tb2 = tauBarostat * tauBarostat; |
| 401 |
eta2 = eta * eta; |
| 402 |
|
| 403 |
|
| 404 |
extra = ((double)info->ndfTrans * kB * targetTemp * tb2 * eta2 / 2.0) / eConvert; |
| 405 |
|
| 406 |
cout.width(8); |
| 407 |
cout.precision(8); |
| 408 |
|
| 409 |
|
| 410 |
cout << info->getTime() << "\t" |
| 411 |
<< chi << "\t" |
| 412 |
<< eta << "\t" |
| 413 |
<< U << "\t" |
| 414 |
<< TS << "\t" |
| 415 |
<< PV << "\t" |
| 416 |
<< extra << "\t" |
| 417 |
<< U+TS+PV+extra << endl; |
| 418 |
|
| 419 |
conservedQuantity = U+TS+PV+extra; |
| 420 |
return conservedQuantity; |
| 421 |
} |