1 |
+ |
#include <cmath> |
2 |
|
#include "Atom.hpp" |
3 |
|
#include "SRI.hpp" |
4 |
|
#include "AbstractClasses.hpp" |
10 |
|
#include "simError.h" |
11 |
|
|
12 |
|
|
13 |
< |
// Basic isotropic thermostating and barostating via the Melchionna |
13 |
> |
// Basic non-isotropic thermostating and barostating via the Melchionna |
14 |
|
// modification of the Hoover algorithm: |
15 |
|
// |
16 |
|
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
20 |
|
// |
21 |
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
22 |
|
|
23 |
< |
NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
24 |
< |
Integrator( theInfo, the_ff ) |
23 |
> |
template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
24 |
> |
T( theInfo, the_ff ) |
25 |
|
{ |
26 |
< |
int i; |
26 |
> |
int i, j; |
27 |
|
chi = 0.0; |
28 |
< |
for(i = 0; i < 9; i++) eta[i] = 0.0; |
28 |
> |
|
29 |
> |
for(i = 0; i < 3; i++) |
30 |
> |
for (j = 0; j < 3; j++) |
31 |
> |
eta[i][j] = 0.0; |
32 |
> |
|
33 |
|
have_tau_thermostat = 0; |
34 |
|
have_tau_barostat = 0; |
35 |
|
have_target_temp = 0; |
36 |
|
have_target_pressure = 0; |
37 |
|
} |
38 |
|
|
39 |
< |
void NPTf::moveA() { |
39 |
> |
template<typename T> void NPTf<T>::moveA() { |
40 |
|
|
41 |
< |
int i,j,k; |
37 |
< |
int atomIndex, aMatIndex; |
41 |
> |
int i, j, k; |
42 |
|
DirectionalAtom* dAtom; |
43 |
< |
double Tb[3]; |
44 |
< |
double ji[3]; |
43 |
> |
double Tb[3], ji[3]; |
44 |
> |
double A[3][3], I[3][3]; |
45 |
> |
double angle, mass; |
46 |
> |
double vel[3], pos[3], frc[3]; |
47 |
> |
|
48 |
|
double rj[3]; |
49 |
|
double instaTemp, instaPress, instaVol; |
50 |
|
double tt2, tb2; |
51 |
< |
double angle; |
52 |
< |
double press[9]; |
53 |
< |
const double p_convert = 1.63882576e8; |
51 |
> |
double sc[3]; |
52 |
> |
double eta2ij; |
53 |
> |
double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3]; |
54 |
> |
double bigScale, smallScale, offDiagMax; |
55 |
|
|
56 |
|
tt2 = tauThermostat * tauThermostat; |
57 |
|
tb2 = tauBarostat * tauBarostat; |
58 |
|
|
59 |
|
instaTemp = tStats->getTemperature(); |
60 |
|
tStats->getPressureTensor(press); |
53 |
– |
|
54 |
– |
for (i=0; i < 9; i++) press[i] *= p_convert; |
55 |
– |
|
61 |
|
instaVol = tStats->getVolume(); |
62 |
|
|
63 |
|
// first evolve chi a half step |
64 |
|
|
65 |
|
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
66 |
< |
|
67 |
< |
eta[0] += dt2 * instaVol * (press[0] - targetPressure) / (NkBT*tb2); |
68 |
< |
eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2); |
69 |
< |
eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2); |
70 |
< |
eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2); |
71 |
< |
eta[4] += dt2 * instaVol * (press[4] - targetPressure) / (NkBT*tb2); |
72 |
< |
eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2); |
73 |
< |
eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2); |
74 |
< |
eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2); |
75 |
< |
eta[8] += dt2 * instaVol * (press[8] - targetPressure) / (NkBT*tb2); |
76 |
< |
|
66 |
> |
|
67 |
> |
for (i = 0; i < 3; i++ ) { |
68 |
> |
for (j = 0; j < 3; j++ ) { |
69 |
> |
if (i == j) { |
70 |
> |
|
71 |
> |
eta[i][j] += dt2 * instaVol * |
72 |
> |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
73 |
> |
|
74 |
> |
vScale[i][j] = eta[i][j] + chi; |
75 |
> |
|
76 |
> |
} else { |
77 |
> |
|
78 |
> |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
79 |
> |
|
80 |
> |
vScale[i][j] = eta[i][j]; |
81 |
> |
|
82 |
> |
} |
83 |
> |
} |
84 |
> |
} |
85 |
> |
|
86 |
|
for( i=0; i<nAtoms; i++ ){ |
87 |
< |
atomIndex = i * 3; |
88 |
< |
aMatIndex = i * 9; |
87 |
> |
|
88 |
> |
atoms[i]->getVel( vel ); |
89 |
> |
atoms[i]->getPos( pos ); |
90 |
> |
atoms[i]->getFrc( frc ); |
91 |
> |
|
92 |
> |
mass = atoms[i]->getMass(); |
93 |
|
|
94 |
|
// velocity half step |
95 |
+ |
|
96 |
+ |
info->matVecMul3( vScale, vel, sc ); |
97 |
|
|
98 |
< |
vx = vel[atomIndex]; |
99 |
< |
vy = vel[atomIndex+1]; |
100 |
< |
vz = vel[atomIndex+2]; |
101 |
< |
|
82 |
< |
scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz; |
83 |
< |
scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz; |
84 |
< |
scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz; |
85 |
< |
|
86 |
< |
vx += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - scx); |
87 |
< |
vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy); |
88 |
< |
vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz); |
98 |
> |
for (j = 0; j < 3; j++) { |
99 |
> |
vel[j] += dt2 * ((frc[j] / mass) * eConvert - sc[j]); |
100 |
> |
rj[j] = pos[j]; |
101 |
> |
} |
102 |
|
|
103 |
< |
vel[atomIndex] = vx; |
91 |
< |
vel[atomIndex+1] = vy; |
92 |
< |
vel[atomIndex+2] = vz; |
103 |
> |
atoms[i]->setVel( vel ); |
104 |
|
|
105 |
|
// position whole step |
106 |
|
|
96 |
– |
rj[0] = pos[atomIndex]; |
97 |
– |
rj[1] = pos[atomIndex+1]; |
98 |
– |
rj[2] = pos[atomIndex+2]; |
99 |
– |
|
107 |
|
info->wrapVector(rj); |
108 |
|
|
109 |
< |
scx = eta[0]*rj[0] + eta[1]*rj[1] + eta[2]*rj[2]; |
103 |
< |
scy = eta[3]*rj[0] + eta[4]*rj[1] + eta[5]*rj[2]; |
104 |
< |
scz = eta[6]*rj[0] + eta[7]*rj[1] + eta[8]*rj[2]; |
109 |
> |
info->matVecMul3( eta, rj, sc ); |
110 |
|
|
111 |
< |
pos[atomIndex] += dt * (vel[atomIndex] + scx); |
112 |
< |
pos[atomIndex+1] += dt * (vel[atomIndex+1] + scy); |
113 |
< |
pos[atomIndex+2] += dt * (vel[atomIndex+2] + scz); |
111 |
> |
for (j = 0; j < 3; j++ ) |
112 |
> |
pos[j] += dt * (vel[j] + sc[j]); |
113 |
> |
|
114 |
> |
atoms[i]->setPos( pos ); |
115 |
|
|
116 |
|
if( atoms[i]->isDirectional() ){ |
117 |
|
|
119 |
|
|
120 |
|
// get and convert the torque to body frame |
121 |
|
|
122 |
< |
Tb[0] = dAtom->getTx(); |
117 |
< |
Tb[1] = dAtom->getTy(); |
118 |
< |
Tb[2] = dAtom->getTz(); |
119 |
< |
|
122 |
> |
dAtom->getTrq( Tb ); |
123 |
|
dAtom->lab2Body( Tb ); |
124 |
|
|
125 |
|
// get the angular momentum, and propagate a half step |
126 |
|
|
127 |
< |
ji[0] = dAtom->getJx(); |
128 |
< |
ji[1] = dAtom->getJy(); |
129 |
< |
ji[2] = dAtom->getJz(); |
127 |
> |
dAtom->getJ( ji ); |
128 |
> |
|
129 |
> |
for (j=0; j < 3; j++) |
130 |
> |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
131 |
|
|
128 |
– |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
129 |
– |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
130 |
– |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
131 |
– |
|
132 |
|
// use the angular velocities to propagate the rotation matrix a |
133 |
|
// full time step |
134 |
< |
|
134 |
> |
|
135 |
> |
dAtom->getA(A); |
136 |
> |
dAtom->getI(I); |
137 |
> |
|
138 |
|
// rotate about the x-axis |
139 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
140 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
141 |
< |
|
139 |
> |
angle = dt2 * ji[0] / I[0][0]; |
140 |
> |
this->rotate( 1, 2, angle, ji, A ); |
141 |
> |
|
142 |
|
// rotate about the y-axis |
143 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
144 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
143 |
> |
angle = dt2 * ji[1] / I[1][1]; |
144 |
> |
this->rotate( 2, 0, angle, ji, A ); |
145 |
|
|
146 |
|
// rotate about the z-axis |
147 |
< |
angle = dt * ji[2] / dAtom->getIzz(); |
148 |
< |
this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); |
147 |
> |
angle = dt * ji[2] / I[2][2]; |
148 |
> |
this->rotate( 0, 1, angle, ji, A); |
149 |
|
|
150 |
|
// rotate about the y-axis |
151 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
152 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
151 |
> |
angle = dt2 * ji[1] / I[1][1]; |
152 |
> |
this->rotate( 2, 0, angle, ji, A ); |
153 |
|
|
154 |
|
// rotate about the x-axis |
155 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
156 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
155 |
> |
angle = dt2 * ji[0] / I[0][0]; |
156 |
> |
this->rotate( 1, 2, angle, ji, A ); |
157 |
|
|
158 |
< |
dAtom->setJx( ji[0] ); |
159 |
< |
dAtom->setJy( ji[1] ); |
160 |
< |
dAtom->setJz( ji[2] ); |
158 |
< |
} |
159 |
< |
|
158 |
> |
dAtom->setJ( ji ); |
159 |
> |
dAtom->setA( A ); |
160 |
> |
} |
161 |
|
} |
162 |
< |
|
162 |
> |
|
163 |
|
// Scale the box after all the positions have been moved: |
164 |
|
|
165 |
< |
|
166 |
< |
|
166 |
< |
// Use a taylor expansion for eta products |
167 |
< |
|
168 |
< |
info->getBoxM(hm); |
165 |
> |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
166 |
> |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
167 |
|
|
168 |
< |
|
168 |
> |
bigScale = 1.0; |
169 |
> |
smallScale = 1.0; |
170 |
> |
offDiagMax = 0.0; |
171 |
> |
|
172 |
> |
for(i=0; i<3; i++){ |
173 |
> |
for(j=0; j<3; j++){ |
174 |
> |
|
175 |
> |
// Calculate the matrix Product of the eta array (we only need |
176 |
> |
// the ij element right now): |
177 |
> |
|
178 |
> |
eta2ij = 0.0; |
179 |
> |
for(k=0; k<3; k++){ |
180 |
> |
eta2ij += eta[i][k] * eta[k][j]; |
181 |
> |
} |
182 |
> |
|
183 |
> |
scaleMat[i][j] = 0.0; |
184 |
> |
// identity matrix (see above): |
185 |
> |
if (i == j) scaleMat[i][j] = 1.0; |
186 |
> |
// Taylor expansion for the exponential truncated at second order: |
187 |
> |
scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij; |
188 |
|
|
189 |
+ |
if (i != j) |
190 |
+ |
if (fabs(scaleMat[i][j]) > offDiagMax) |
191 |
+ |
offDiagMax = fabs(scaleMat[i][j]); |
192 |
+ |
|
193 |
+ |
} |
194 |
|
|
195 |
< |
|
196 |
< |
|
197 |
< |
info->scaleBox(exp(dt*eta)); |
198 |
< |
|
199 |
< |
|
195 |
> |
if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; |
196 |
> |
if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; |
197 |
> |
} |
198 |
> |
|
199 |
> |
if ((bigScale > 1.1) || (smallScale < 0.9)) { |
200 |
> |
sprintf( painCave.errMsg, |
201 |
> |
"NPTf error: Attempting a Box scaling of more than 10 percent.\n" |
202 |
> |
" Check your tauBarostat, as it is probably too small!\n\n" |
203 |
> |
" scaleMat = [%lf\t%lf\t%lf]\n" |
204 |
> |
" [%lf\t%lf\t%lf]\n" |
205 |
> |
" [%lf\t%lf\t%lf]\n", |
206 |
> |
scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
207 |
> |
scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
208 |
> |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
209 |
> |
painCave.isFatal = 1; |
210 |
> |
simError(); |
211 |
> |
} else if (offDiagMax > 0.1) { |
212 |
> |
sprintf( painCave.errMsg, |
213 |
> |
"NPTf error: Attempting an off-diagonal Box scaling of more than 10 percent.\n" |
214 |
> |
" Check your tauBarostat, as it is probably too small!\n\n" |
215 |
> |
" scaleMat = [%lf\t%lf\t%lf]\n" |
216 |
> |
" [%lf\t%lf\t%lf]\n" |
217 |
> |
" [%lf\t%lf\t%lf]\n", |
218 |
> |
scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
219 |
> |
scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
220 |
> |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
221 |
> |
painCave.isFatal = 1; |
222 |
> |
simError(); |
223 |
> |
} else { |
224 |
> |
info->getBoxM(hm); |
225 |
> |
info->matMul3(hm, scaleMat, hmnew); |
226 |
> |
info->setBoxM(hmnew); |
227 |
> |
} |
228 |
> |
|
229 |
|
} |
230 |
|
|
231 |
< |
void NPTi::moveB( void ){ |
232 |
< |
int i,j,k; |
233 |
< |
int atomIndex; |
231 |
> |
template<typename T> void NPTf<T>::moveB( void ){ |
232 |
> |
|
233 |
> |
int i, j; |
234 |
|
DirectionalAtom* dAtom; |
235 |
< |
double Tb[3]; |
236 |
< |
double ji[3]; |
235 |
> |
double Tb[3], ji[3]; |
236 |
> |
double vel[3], frc[3]; |
237 |
> |
double mass; |
238 |
> |
|
239 |
|
double instaTemp, instaPress, instaVol; |
240 |
|
double tt2, tb2; |
241 |
+ |
double sc[3]; |
242 |
+ |
double press[3][3], vScale[3][3]; |
243 |
|
|
244 |
|
tt2 = tauThermostat * tauThermostat; |
245 |
|
tb2 = tauBarostat * tauBarostat; |
246 |
|
|
247 |
|
instaTemp = tStats->getTemperature(); |
248 |
< |
instaPress = tStats->getPressure(); |
248 |
> |
tStats->getPressureTensor(press); |
249 |
|
instaVol = tStats->getVolume(); |
250 |
< |
|
250 |
> |
|
251 |
> |
// first evolve chi a half step |
252 |
> |
|
253 |
|
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
197 |
– |
eta += dt2 * ( instaVol * (instaPress - targetPressure) / (NkBT*tb2)); |
254 |
|
|
255 |
+ |
for (i = 0; i < 3; i++ ) { |
256 |
+ |
for (j = 0; j < 3; j++ ) { |
257 |
+ |
if (i == j) { |
258 |
+ |
|
259 |
+ |
eta[i][j] += dt2 * instaVol * |
260 |
+ |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
261 |
+ |
|
262 |
+ |
vScale[i][j] = eta[i][j] + chi; |
263 |
+ |
|
264 |
+ |
} else { |
265 |
+ |
|
266 |
+ |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
267 |
+ |
|
268 |
+ |
vScale[i][j] = eta[i][j]; |
269 |
+ |
|
270 |
+ |
} |
271 |
+ |
} |
272 |
+ |
} |
273 |
+ |
|
274 |
|
for( i=0; i<nAtoms; i++ ){ |
275 |
< |
atomIndex = i * 3; |
275 |
> |
|
276 |
> |
atoms[i]->getVel( vel ); |
277 |
> |
atoms[i]->getFrc( frc ); |
278 |
> |
|
279 |
> |
mass = atoms[i]->getMass(); |
280 |
|
|
281 |
|
// velocity half step |
282 |
< |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
283 |
< |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
205 |
< |
vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert |
206 |
< |
- vel[j]*(chi+eta)); |
282 |
> |
|
283 |
> |
info->matVecMul3( vScale, vel, sc ); |
284 |
|
|
285 |
+ |
for (j = 0; j < 3; j++) { |
286 |
+ |
vel[j] += dt2 * ((frc[j] / mass) * eConvert - sc[j]); |
287 |
+ |
} |
288 |
+ |
|
289 |
+ |
atoms[i]->setVel( vel ); |
290 |
+ |
|
291 |
|
if( atoms[i]->isDirectional() ){ |
292 |
< |
|
292 |
> |
|
293 |
|
dAtom = (DirectionalAtom *)atoms[i]; |
294 |
< |
|
294 |
> |
|
295 |
|
// get and convert the torque to body frame |
296 |
|
|
297 |
< |
Tb[0] = dAtom->getTx(); |
215 |
< |
Tb[1] = dAtom->getTy(); |
216 |
< |
Tb[2] = dAtom->getTz(); |
217 |
< |
|
297 |
> |
dAtom->getTrq( Tb ); |
298 |
|
dAtom->lab2Body( Tb ); |
299 |
|
|
300 |
< |
// get the angular momentum, and complete the angular momentum |
221 |
< |
// half step |
300 |
> |
// get the angular momentum, and propagate a half step |
301 |
|
|
302 |
< |
ji[0] = dAtom->getJx(); |
224 |
< |
ji[1] = dAtom->getJy(); |
225 |
< |
ji[2] = dAtom->getJz(); |
302 |
> |
dAtom->getJ( ji ); |
303 |
|
|
304 |
< |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
305 |
< |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
229 |
< |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
304 |
> |
for (j=0; j < 3; j++) |
305 |
> |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
306 |
|
|
307 |
< |
dAtom->setJx( ji[0] ); |
308 |
< |
dAtom->setJy( ji[1] ); |
309 |
< |
dAtom->setJz( ji[2] ); |
234 |
< |
} |
307 |
> |
dAtom->setJ( ji ); |
308 |
> |
|
309 |
> |
} |
310 |
|
} |
311 |
|
} |
312 |
|
|
313 |
< |
int NPTi::readyCheck() { |
313 |
> |
template<typename T> void NPTf<T>::resetIntegrator() { |
314 |
> |
int i,j; |
315 |
> |
|
316 |
> |
chi = 0.0; |
317 |
> |
|
318 |
> |
for(i = 0; i < 3; i++) |
319 |
> |
for (j = 0; j < 3; j++) |
320 |
> |
eta[i][j] = 0.0; |
321 |
> |
|
322 |
> |
} |
323 |
> |
|
324 |
> |
template<typename T> int NPTf<T>::readyCheck() { |
325 |
> |
|
326 |
> |
//check parent's readyCheck() first |
327 |
> |
if (T::readyCheck() == -1) |
328 |
> |
return -1; |
329 |
|
|
330 |
|
// First check to see if we have a target temperature. |
331 |
|
// Not having one is fatal. |
332 |
|
|
333 |
|
if (!have_target_temp) { |
334 |
|
sprintf( painCave.errMsg, |
335 |
< |
"NPTi error: You can't use the NPTi integrator\n" |
335 |
> |
"NPTf error: You can't use the NPTf integrator\n" |
336 |
|
" without a targetTemp!\n" |
337 |
|
); |
338 |
|
painCave.isFatal = 1; |
342 |
|
|
343 |
|
if (!have_target_pressure) { |
344 |
|
sprintf( painCave.errMsg, |
345 |
< |
"NPTi error: You can't use the NPTi integrator\n" |
345 |
> |
"NPTf error: You can't use the NPTf integrator\n" |
346 |
|
" without a targetPressure!\n" |
347 |
|
); |
348 |
|
painCave.isFatal = 1; |
354 |
|
|
355 |
|
if (!have_tau_thermostat) { |
356 |
|
sprintf( painCave.errMsg, |
357 |
< |
"NPTi error: If you use the NPTi\n" |
357 |
> |
"NPTf error: If you use the NPTf\n" |
358 |
|
" integrator, you must set tauThermostat.\n"); |
359 |
|
painCave.isFatal = 1; |
360 |
|
simError(); |
365 |
|
|
366 |
|
if (!have_tau_barostat) { |
367 |
|
sprintf( painCave.errMsg, |
368 |
< |
"NPTi error: If you use the NPTi\n" |
368 |
> |
"NPTf error: If you use the NPTf\n" |
369 |
|
" integrator, you must set tauBarostat.\n"); |
370 |
|
painCave.isFatal = 1; |
371 |
|
simError(); |