1 |
+ |
#include <cmath> |
2 |
|
#include "Atom.hpp" |
3 |
|
#include "SRI.hpp" |
4 |
|
#include "AbstractClasses.hpp" |
9 |
|
#include "Integrator.hpp" |
10 |
|
#include "simError.h" |
11 |
|
|
12 |
+ |
#ifdef IS_MPI |
13 |
+ |
#include "mpiSimulation.hpp" |
14 |
+ |
#endif |
15 |
|
|
16 |
< |
// Basic isotropic thermostating and barostating via the Melchionna |
16 |
> |
// Basic non-isotropic thermostating and barostating via the Melchionna |
17 |
|
// modification of the Hoover algorithm: |
18 |
|
// |
19 |
|
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
23 |
|
// |
24 |
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
25 |
|
|
26 |
< |
NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
27 |
< |
Integrator( theInfo, the_ff ) |
26 |
> |
template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
27 |
> |
T( theInfo, the_ff ) |
28 |
|
{ |
29 |
< |
int i; |
30 |
< |
chi = 0.0; |
31 |
< |
for(i = 0; i < 9; i++) eta[i] = 0.0; |
32 |
< |
have_tau_thermostat = 0; |
33 |
< |
have_tau_barostat = 0; |
34 |
< |
have_target_temp = 0; |
35 |
< |
have_target_pressure = 0; |
29 |
> |
|
30 |
> |
int i,j; |
31 |
> |
|
32 |
> |
for(i = 0; i < 3; i++){ |
33 |
> |
for (j = 0; j < 3; j++){ |
34 |
> |
|
35 |
> |
eta[i][j] = 0.0; |
36 |
> |
oldEta[i][j] = 0.0; |
37 |
> |
} |
38 |
> |
} |
39 |
|
} |
40 |
|
|
41 |
< |
void NPTf::moveA() { |
35 |
< |
|
36 |
< |
int i,j,k; |
37 |
< |
int atomIndex, aMatIndex; |
38 |
< |
DirectionalAtom* dAtom; |
39 |
< |
double Tb[3]; |
40 |
< |
double ji[3]; |
41 |
< |
double rj[3]; |
42 |
< |
double instaTemp, instaPress, instaVol; |
43 |
< |
double tt2, tb2; |
44 |
< |
double angle; |
45 |
< |
double press[9]; |
46 |
< |
const double p_convert = 1.63882576e8; |
41 |
> |
template<typename T> NPTf<T>::~NPTf() { |
42 |
|
|
43 |
< |
tt2 = tauThermostat * tauThermostat; |
44 |
< |
tb2 = tauBarostat * tauBarostat; |
43 |
> |
// empty for now |
44 |
> |
} |
45 |
|
|
46 |
< |
instaTemp = tStats->getTemperature(); |
47 |
< |
tStats->getPressureTensor(press); |
46 |
> |
template<typename T> void NPTf<T>::resetIntegrator() { |
47 |
> |
|
48 |
> |
int i, j; |
49 |
> |
|
50 |
> |
for(i = 0; i < 3; i++) |
51 |
> |
for (j = 0; j < 3; j++) |
52 |
> |
eta[i][j] = 0.0; |
53 |
> |
|
54 |
> |
T::resetIntegrator(); |
55 |
> |
} |
56 |
|
|
57 |
< |
for (i=0; i < 9; i++) press[i] *= p_convert; |
55 |
< |
|
56 |
< |
instaVol = tStats->getVolume(); |
57 |
< |
|
58 |
< |
// first evolve chi a half step |
57 |
> |
template<typename T> void NPTf<T>::evolveEtaA() { |
58 |
|
|
59 |
< |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
59 |
> |
int i, j; |
60 |
|
|
61 |
< |
eta[0] += dt2 * instaVol * (press[0] - targetPressure) / (NkBT*tb2); |
62 |
< |
eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2); |
63 |
< |
eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2); |
64 |
< |
eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2); |
65 |
< |
eta[4] += dt2 * instaVol * (press[4] - targetPressure) / (NkBT*tb2); |
66 |
< |
eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2); |
67 |
< |
eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2); |
68 |
< |
eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2); |
69 |
< |
eta[8] += dt2 * instaVol * (press[8] - targetPressure) / (NkBT*tb2); |
61 |
> |
for(i = 0; i < 3; i ++){ |
62 |
> |
for(j = 0; j < 3; j++){ |
63 |
> |
if( i == j) |
64 |
> |
eta[i][j] += dt2 * instaVol * |
65 |
> |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
66 |
> |
else |
67 |
> |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
68 |
> |
} |
69 |
> |
} |
70 |
|
|
71 |
< |
for( i=0; i<nAtoms; i++ ){ |
72 |
< |
atomIndex = i * 3; |
73 |
< |
aMatIndex = i * 9; |
74 |
< |
|
76 |
< |
// velocity half step |
77 |
< |
|
78 |
< |
vx = vel[atomIndex]; |
79 |
< |
vy = vel[atomIndex+1]; |
80 |
< |
vz = vel[atomIndex+2]; |
81 |
< |
|
82 |
< |
scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz; |
83 |
< |
scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz; |
84 |
< |
scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz; |
85 |
< |
|
86 |
< |
vx += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - scx); |
87 |
< |
vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy); |
88 |
< |
vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz); |
71 |
> |
for(i = 0; i < 3; i++) |
72 |
> |
for (j = 0; j < 3; j++) |
73 |
> |
oldEta[i][j] = eta[i][j]; |
74 |
> |
} |
75 |
|
|
76 |
< |
vel[atomIndex] = vx; |
77 |
< |
vel[atomIndex+1] = vy; |
78 |
< |
vel[atomIndex+2] = vz; |
76 |
> |
template<typename T> void NPTf<T>::evolveEtaB() { |
77 |
> |
|
78 |
> |
int i,j; |
79 |
|
|
80 |
< |
// position whole step |
80 |
> |
for(i = 0; i < 3; i++) |
81 |
> |
for (j = 0; j < 3; j++) |
82 |
> |
prevEta[i][j] = eta[i][j]; |
83 |
|
|
84 |
< |
rj[0] = pos[atomIndex]; |
85 |
< |
rj[1] = pos[atomIndex+1]; |
86 |
< |
rj[2] = pos[atomIndex+2]; |
84 |
> |
for(i = 0; i < 3; i ++){ |
85 |
> |
for(j = 0; j < 3; j++){ |
86 |
> |
if( i == j) { |
87 |
> |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
88 |
> |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
89 |
> |
} else { |
90 |
> |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2); |
91 |
> |
} |
92 |
> |
} |
93 |
> |
} |
94 |
> |
} |
95 |
|
|
96 |
< |
info->wrapVector(rj); |
96 |
> |
template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) { |
97 |
> |
int i,j; |
98 |
> |
double vScale[3][3]; |
99 |
|
|
100 |
< |
scx = eta[0]*rj[0] + eta[1]*rj[1] + eta[2]*rj[2]; |
101 |
< |
scy = eta[3]*rj[0] + eta[4]*rj[1] + eta[5]*rj[2]; |
102 |
< |
scz = eta[6]*rj[0] + eta[7]*rj[1] + eta[8]*rj[2]; |
105 |
< |
|
106 |
< |
pos[atomIndex] += dt * (vel[atomIndex] + scx); |
107 |
< |
pos[atomIndex+1] += dt * (vel[atomIndex+1] + scy); |
108 |
< |
pos[atomIndex+2] += dt * (vel[atomIndex+2] + scz); |
109 |
< |
|
110 |
< |
if( atoms[i]->isDirectional() ){ |
111 |
< |
|
112 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
113 |
< |
|
114 |
< |
// get and convert the torque to body frame |
100 |
> |
for (i = 0; i < 3; i++ ) { |
101 |
> |
for (j = 0; j < 3; j++ ) { |
102 |
> |
vScale[i][j] = eta[i][j]; |
103 |
|
|
104 |
< |
Tb[0] = dAtom->getTx(); |
105 |
< |
Tb[1] = dAtom->getTy(); |
106 |
< |
Tb[2] = dAtom->getTz(); |
119 |
< |
|
120 |
< |
dAtom->lab2Body( Tb ); |
121 |
< |
|
122 |
< |
// get the angular momentum, and propagate a half step |
123 |
< |
|
124 |
< |
ji[0] = dAtom->getJx(); |
125 |
< |
ji[1] = dAtom->getJy(); |
126 |
< |
ji[2] = dAtom->getJz(); |
127 |
< |
|
128 |
< |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
129 |
< |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
130 |
< |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
131 |
< |
|
132 |
< |
// use the angular velocities to propagate the rotation matrix a |
133 |
< |
// full time step |
134 |
< |
|
135 |
< |
// rotate about the x-axis |
136 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
137 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
138 |
< |
|
139 |
< |
// rotate about the y-axis |
140 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
141 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
142 |
< |
|
143 |
< |
// rotate about the z-axis |
144 |
< |
angle = dt * ji[2] / dAtom->getIzz(); |
145 |
< |
this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); |
146 |
< |
|
147 |
< |
// rotate about the y-axis |
148 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
149 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
150 |
< |
|
151 |
< |
// rotate about the x-axis |
152 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
153 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
154 |
< |
|
155 |
< |
dAtom->setJx( ji[0] ); |
156 |
< |
dAtom->setJy( ji[1] ); |
157 |
< |
dAtom->setJz( ji[2] ); |
104 |
> |
if (i == j) { |
105 |
> |
vScale[i][j] += chi; |
106 |
> |
} |
107 |
|
} |
159 |
– |
|
108 |
|
} |
161 |
– |
|
162 |
– |
// Scale the box after all the positions have been moved: |
109 |
|
|
110 |
+ |
info->matVecMul3( vScale, vel, sc ); |
111 |
+ |
} |
112 |
|
|
113 |
+ |
template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){ |
114 |
+ |
int i,j; |
115 |
+ |
double myVel[3]; |
116 |
+ |
double vScale[3][3]; |
117 |
|
|
118 |
< |
// Use a taylor expansion for eta products |
119 |
< |
|
120 |
< |
info->getBoxM(hm); |
118 |
> |
for (i = 0; i < 3; i++ ) { |
119 |
> |
for (j = 0; j < 3; j++ ) { |
120 |
> |
vScale[i][j] = eta[i][j]; |
121 |
> |
|
122 |
> |
if (i == j) { |
123 |
> |
vScale[i][j] += chi; |
124 |
> |
} |
125 |
> |
} |
126 |
> |
} |
127 |
|
|
128 |
+ |
for (j = 0; j < 3; j++) |
129 |
+ |
myVel[j] = oldVel[3*index + j]; |
130 |
|
|
131 |
+ |
info->matVecMul3( vScale, myVel, sc ); |
132 |
+ |
} |
133 |
|
|
134 |
+ |
template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3], |
135 |
+ |
int index, double sc[3]){ |
136 |
+ |
int j; |
137 |
+ |
double rj[3]; |
138 |
|
|
139 |
< |
|
140 |
< |
|
175 |
< |
info->scaleBox(exp(dt*eta)); |
176 |
< |
|
139 |
> |
for(j=0; j<3; j++) |
140 |
> |
rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; |
141 |
|
|
142 |
+ |
info->matVecMul3( eta, rj, sc ); |
143 |
|
} |
144 |
|
|
145 |
< |
void NPTi::moveB( void ){ |
145 |
> |
template<typename T> void NPTf<T>::scaleSimBox( void ){ |
146 |
> |
|
147 |
|
int i,j,k; |
148 |
< |
int atomIndex; |
149 |
< |
DirectionalAtom* dAtom; |
150 |
< |
double Tb[3]; |
151 |
< |
double ji[3]; |
186 |
< |
double instaTemp, instaPress, instaVol; |
187 |
< |
double tt2, tb2; |
148 |
> |
double scaleMat[3][3]; |
149 |
> |
double eta2ij; |
150 |
> |
double bigScale, smallScale, offDiagMax; |
151 |
> |
double hm[3][3], hmnew[3][3]; |
152 |
|
|
189 |
– |
tt2 = tauThermostat * tauThermostat; |
190 |
– |
tb2 = tauBarostat * tauBarostat; |
153 |
|
|
192 |
– |
instaTemp = tStats->getTemperature(); |
193 |
– |
instaPress = tStats->getPressure(); |
194 |
– |
instaVol = tStats->getVolume(); |
154 |
|
|
155 |
< |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
197 |
< |
eta += dt2 * ( instaVol * (instaPress - targetPressure) / (NkBT*tb2)); |
155 |
> |
// Scale the box after all the positions have been moved: |
156 |
|
|
157 |
< |
for( i=0; i<nAtoms; i++ ){ |
158 |
< |
atomIndex = i * 3; |
159 |
< |
|
160 |
< |
// velocity half step |
161 |
< |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
162 |
< |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
163 |
< |
vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert |
164 |
< |
- vel[j]*(chi+eta)); |
165 |
< |
|
208 |
< |
if( atoms[i]->isDirectional() ){ |
157 |
> |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
158 |
> |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
159 |
> |
|
160 |
> |
bigScale = 1.0; |
161 |
> |
smallScale = 1.0; |
162 |
> |
offDiagMax = 0.0; |
163 |
> |
|
164 |
> |
for(i=0; i<3; i++){ |
165 |
> |
for(j=0; j<3; j++){ |
166 |
|
|
167 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
167 |
> |
// Calculate the matrix Product of the eta array (we only need |
168 |
> |
// the ij element right now): |
169 |
|
|
170 |
< |
// get and convert the torque to body frame |
170 |
> |
eta2ij = 0.0; |
171 |
> |
for(k=0; k<3; k++){ |
172 |
> |
eta2ij += eta[i][k] * eta[k][j]; |
173 |
> |
} |
174 |
|
|
175 |
< |
Tb[0] = dAtom->getTx(); |
176 |
< |
Tb[1] = dAtom->getTy(); |
177 |
< |
Tb[2] = dAtom->getTz(); |
178 |
< |
|
179 |
< |
dAtom->lab2Body( Tb ); |
180 |
< |
|
181 |
< |
// get the angular momentum, and complete the angular momentum |
182 |
< |
// half step |
183 |
< |
|
223 |
< |
ji[0] = dAtom->getJx(); |
224 |
< |
ji[1] = dAtom->getJy(); |
225 |
< |
ji[2] = dAtom->getJz(); |
226 |
< |
|
227 |
< |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
228 |
< |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
229 |
< |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
230 |
< |
|
231 |
< |
dAtom->setJx( ji[0] ); |
232 |
< |
dAtom->setJy( ji[1] ); |
233 |
< |
dAtom->setJz( ji[2] ); |
175 |
> |
scaleMat[i][j] = 0.0; |
176 |
> |
// identity matrix (see above): |
177 |
> |
if (i == j) scaleMat[i][j] = 1.0; |
178 |
> |
// Taylor expansion for the exponential truncated at second order: |
179 |
> |
scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij; |
180 |
> |
|
181 |
> |
if (i != j) |
182 |
> |
if (fabs(scaleMat[i][j]) > offDiagMax) |
183 |
> |
offDiagMax = fabs(scaleMat[i][j]); |
184 |
|
} |
235 |
– |
} |
236 |
– |
} |
185 |
|
|
186 |
< |
int NPTi::readyCheck() { |
187 |
< |
|
188 |
< |
// First check to see if we have a target temperature. |
241 |
< |
// Not having one is fatal. |
186 |
> |
if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; |
187 |
> |
if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; |
188 |
> |
} |
189 |
|
|
190 |
< |
if (!have_target_temp) { |
190 |
> |
if ((bigScale > 1.1) || (smallScale < 0.9)) { |
191 |
|
sprintf( painCave.errMsg, |
192 |
< |
"NPTi error: You can't use the NPTi integrator\n" |
193 |
< |
" without a targetTemp!\n" |
194 |
< |
); |
192 |
> |
"NPTf error: Attempting a Box scaling of more than 10 percent.\n" |
193 |
> |
" Check your tauBarostat, as it is probably too small!\n\n" |
194 |
> |
" scaleMat = [%lf\t%lf\t%lf]\n" |
195 |
> |
" [%lf\t%lf\t%lf]\n" |
196 |
> |
" [%lf\t%lf\t%lf]\n", |
197 |
> |
scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
198 |
> |
scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
199 |
> |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
200 |
|
painCave.isFatal = 1; |
201 |
|
simError(); |
202 |
< |
return -1; |
251 |
< |
} |
252 |
< |
|
253 |
< |
if (!have_target_pressure) { |
202 |
> |
} else if (offDiagMax > 0.1) { |
203 |
|
sprintf( painCave.errMsg, |
204 |
< |
"NPTi error: You can't use the NPTi integrator\n" |
205 |
< |
" without a targetPressure!\n" |
206 |
< |
); |
204 |
> |
"NPTf error: Attempting an off-diagonal Box scaling of more than 10 percent.\n" |
205 |
> |
" Check your tauBarostat, as it is probably too small!\n\n" |
206 |
> |
" scaleMat = [%lf\t%lf\t%lf]\n" |
207 |
> |
" [%lf\t%lf\t%lf]\n" |
208 |
> |
" [%lf\t%lf\t%lf]\n", |
209 |
> |
scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
210 |
> |
scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
211 |
> |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
212 |
|
painCave.isFatal = 1; |
213 |
|
simError(); |
214 |
< |
return -1; |
214 |
> |
} else { |
215 |
> |
info->getBoxM(hm); |
216 |
> |
info->matMul3(hm, scaleMat, hmnew); |
217 |
> |
info->setBoxM(hmnew); |
218 |
|
} |
219 |
+ |
} |
220 |
+ |
|
221 |
+ |
template<typename T> bool NPTf<T>::etaConverged() { |
222 |
+ |
int i; |
223 |
+ |
double diffEta, sumEta; |
224 |
+ |
|
225 |
+ |
sumEta = 0; |
226 |
+ |
for(i = 0; i < 3; i++) |
227 |
+ |
sumEta += pow(prevEta[i][i] - eta[i][i], 2); |
228 |
|
|
229 |
< |
// We must set tauThermostat. |
230 |
< |
|
231 |
< |
if (!have_tau_thermostat) { |
232 |
< |
sprintf( painCave.errMsg, |
267 |
< |
"NPTi error: If you use the NPTi\n" |
268 |
< |
" integrator, you must set tauThermostat.\n"); |
269 |
< |
painCave.isFatal = 1; |
270 |
< |
simError(); |
271 |
< |
return -1; |
272 |
< |
} |
229 |
> |
diffEta = sqrt( sumEta / 3.0 ); |
230 |
> |
|
231 |
> |
return ( diffEta <= etaTolerance ); |
232 |
> |
} |
233 |
|
|
234 |
< |
// We must set tauBarostat. |
235 |
< |
|
236 |
< |
if (!have_tau_barostat) { |
237 |
< |
sprintf( painCave.errMsg, |
238 |
< |
"NPTi error: If you use the NPTi\n" |
239 |
< |
" integrator, you must set tauBarostat.\n"); |
240 |
< |
painCave.isFatal = 1; |
241 |
< |
simError(); |
242 |
< |
return -1; |
243 |
< |
} |
234 |
> |
template<typename T> double NPTf<T>::getConservedQuantity(void){ |
235 |
> |
|
236 |
> |
double conservedQuantity; |
237 |
> |
double totalEnergy; |
238 |
> |
double thermostat_kinetic; |
239 |
> |
double thermostat_potential; |
240 |
> |
double barostat_kinetic; |
241 |
> |
double barostat_potential; |
242 |
> |
double trEta; |
243 |
> |
double a[3][3], b[3][3]; |
244 |
|
|
245 |
< |
// We need NkBT a lot, so just set it here: |
245 |
> |
totalEnergy = tStats->getTotalE(); |
246 |
|
|
247 |
< |
NkBT = (double)info->ndf * kB * targetTemp; |
247 |
> |
thermostat_kinetic = fkBT * tt2 * chi * chi / |
248 |
> |
(2.0 * eConvert); |
249 |
|
|
250 |
< |
return 1; |
250 |
> |
thermostat_potential = fkBT* integralOfChidt / eConvert; |
251 |
> |
|
252 |
> |
info->transposeMat3(eta, a); |
253 |
> |
info->matMul3(a, eta, b); |
254 |
> |
trEta = info->matTrace3(b); |
255 |
> |
|
256 |
> |
barostat_kinetic = NkBT * tb2 * trEta / |
257 |
> |
(2.0 * eConvert); |
258 |
> |
|
259 |
> |
barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / |
260 |
> |
eConvert; |
261 |
> |
|
262 |
> |
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
263 |
> |
barostat_kinetic + barostat_potential; |
264 |
> |
|
265 |
> |
// cout.width(8); |
266 |
> |
// cout.precision(8); |
267 |
> |
|
268 |
> |
// cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << |
269 |
> |
// "\t" << thermostat_potential << "\t" << barostat_kinetic << |
270 |
> |
// "\t" << barostat_potential << "\t" << conservedQuantity << endl; |
271 |
> |
|
272 |
> |
return conservedQuantity; |
273 |
> |
|
274 |
|
} |