| 22 |
|
NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
| 23 |
|
Integrator( theInfo, the_ff ) |
| 24 |
|
{ |
| 25 |
< |
int i; |
| 25 |
> |
int i, j; |
| 26 |
|
chi = 0.0; |
| 27 |
< |
for(i = 0; i < 9; i++) eta[i] = 0.0; |
| 27 |
> |
|
| 28 |
> |
for(i = 0; i < 3; i++) |
| 29 |
> |
for (j = 0; j < 3; j++) |
| 30 |
> |
eta[i][j] = 0.0; |
| 31 |
> |
|
| 32 |
|
have_tau_thermostat = 0; |
| 33 |
|
have_tau_barostat = 0; |
| 34 |
|
have_target_temp = 0; |
| 37 |
|
|
| 38 |
|
void NPTf::moveA() { |
| 39 |
|
|
| 40 |
< |
int i,j,k; |
| 37 |
< |
int atomIndex, aMatIndex; |
| 40 |
> |
int i, j, k; |
| 41 |
|
DirectionalAtom* dAtom; |
| 42 |
< |
double Tb[3]; |
| 43 |
< |
double ji[3]; |
| 42 |
> |
double Tb[3], ji[3]; |
| 43 |
> |
double A[3][3], I[3][3]; |
| 44 |
> |
double angle, mass; |
| 45 |
> |
double vel[3], pos[3], frc[3]; |
| 46 |
> |
|
| 47 |
|
double rj[3]; |
| 42 |
– |
double ident[3][3], eta1[3][3], eta2[3][3], hmnew[3][3]; |
| 43 |
– |
double hm[9]; |
| 44 |
– |
double vx, vy, vz; |
| 45 |
– |
double scx, scy, scz; |
| 48 |
|
double instaTemp, instaPress, instaVol; |
| 49 |
|
double tt2, tb2; |
| 50 |
< |
double angle; |
| 51 |
< |
double press[9]; |
| 52 |
< |
const double p_convert = 1.63882576e8; |
| 50 |
> |
double sc[3]; |
| 51 |
> |
double eta2ij; |
| 52 |
> |
double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3]; |
| 53 |
|
|
| 54 |
|
tt2 = tauThermostat * tauThermostat; |
| 55 |
|
tb2 = tauBarostat * tauBarostat; |
| 56 |
|
|
| 57 |
|
instaTemp = tStats->getTemperature(); |
| 58 |
|
tStats->getPressureTensor(press); |
| 57 |
– |
|
| 58 |
– |
for (i=0; i < 9; i++) press[i] *= p_convert; |
| 59 |
– |
|
| 59 |
|
instaVol = tStats->getVolume(); |
| 60 |
|
|
| 61 |
|
// first evolve chi a half step |
| 62 |
|
|
| 63 |
|
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 64 |
< |
|
| 65 |
< |
eta[0] += dt2 * instaVol * (press[0] - targetPressure) / (NkBT*tb2); |
| 66 |
< |
eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2); |
| 67 |
< |
eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2); |
| 68 |
< |
eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2); |
| 69 |
< |
eta[4] += dt2 * instaVol * (press[4] - targetPressure) / (NkBT*tb2); |
| 70 |
< |
eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2); |
| 71 |
< |
eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2); |
| 72 |
< |
eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2); |
| 73 |
< |
eta[8] += dt2 * instaVol * (press[8] - targetPressure) / (NkBT*tb2); |
| 74 |
< |
|
| 64 |
> |
|
| 65 |
> |
for (i = 0; i < 3; i++ ) { |
| 66 |
> |
for (j = 0; j < 3; j++ ) { |
| 67 |
> |
if (i == j) { |
| 68 |
> |
|
| 69 |
> |
eta[i][j] += dt2 * instaVol * |
| 70 |
> |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
| 71 |
> |
|
| 72 |
> |
vScale[i][j] = eta[i][j] + chi; |
| 73 |
> |
|
| 74 |
> |
} else { |
| 75 |
> |
|
| 76 |
> |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
| 77 |
> |
|
| 78 |
> |
vScale[i][j] = eta[i][j]; |
| 79 |
> |
|
| 80 |
> |
} |
| 81 |
> |
} |
| 82 |
> |
} |
| 83 |
> |
|
| 84 |
|
for( i=0; i<nAtoms; i++ ){ |
| 85 |
< |
atomIndex = i * 3; |
| 86 |
< |
aMatIndex = i * 9; |
| 85 |
> |
|
| 86 |
> |
atoms[i]->getVel( vel ); |
| 87 |
> |
atoms[i]->getPos( pos ); |
| 88 |
> |
atoms[i]->getFrc( frc ); |
| 89 |
> |
|
| 90 |
> |
mass = atoms[i]->getMass(); |
| 91 |
|
|
| 92 |
|
// velocity half step |
| 93 |
+ |
|
| 94 |
+ |
info->matVecMul3( vScale, vel, sc ); |
| 95 |
|
|
| 96 |
< |
vx = vel[atomIndex]; |
| 97 |
< |
vy = vel[atomIndex+1]; |
| 98 |
< |
vz = vel[atomIndex+2]; |
| 99 |
< |
|
| 86 |
< |
scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz; |
| 87 |
< |
scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz; |
| 88 |
< |
scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz; |
| 89 |
< |
|
| 90 |
< |
vx += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - scx); |
| 91 |
< |
vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy); |
| 92 |
< |
vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz); |
| 96 |
> |
for (j = 0; j < 3; j++) { |
| 97 |
> |
vel[j] += dt2 * ((frc[j] / mass) * eConvert - sc[j]); |
| 98 |
> |
rj[j] = pos[j]; |
| 99 |
> |
} |
| 100 |
|
|
| 101 |
< |
vel[atomIndex] = vx; |
| 95 |
< |
vel[atomIndex+1] = vy; |
| 96 |
< |
vel[atomIndex+2] = vz; |
| 101 |
> |
atoms[i]->setVel( vel ); |
| 102 |
|
|
| 103 |
|
// position whole step |
| 104 |
|
|
| 100 |
– |
rj[0] = pos[atomIndex]; |
| 101 |
– |
rj[1] = pos[atomIndex+1]; |
| 102 |
– |
rj[2] = pos[atomIndex+2]; |
| 103 |
– |
|
| 105 |
|
info->wrapVector(rj); |
| 106 |
|
|
| 107 |
< |
scx = eta[0]*rj[0] + eta[1]*rj[1] + eta[2]*rj[2]; |
| 107 |
< |
scy = eta[3]*rj[0] + eta[4]*rj[1] + eta[5]*rj[2]; |
| 108 |
< |
scz = eta[6]*rj[0] + eta[7]*rj[1] + eta[8]*rj[2]; |
| 107 |
> |
info->matVecMul3( eta, rj, sc ); |
| 108 |
|
|
| 109 |
< |
pos[atomIndex] += dt * (vel[atomIndex] + scx); |
| 110 |
< |
pos[atomIndex+1] += dt * (vel[atomIndex+1] + scy); |
| 112 |
< |
pos[atomIndex+2] += dt * (vel[atomIndex+2] + scz); |
| 109 |
> |
for (j = 0; j < 3; j++ ) |
| 110 |
> |
pos[j] += dt * (vel[j] + sc[j]); |
| 111 |
|
|
| 112 |
|
if( atoms[i]->isDirectional() ){ |
| 113 |
|
|
| 115 |
|
|
| 116 |
|
// get and convert the torque to body frame |
| 117 |
|
|
| 118 |
< |
Tb[0] = dAtom->getTx(); |
| 121 |
< |
Tb[1] = dAtom->getTy(); |
| 122 |
< |
Tb[2] = dAtom->getTz(); |
| 123 |
< |
|
| 118 |
> |
dAtom->getTrq( Tb ); |
| 119 |
|
dAtom->lab2Body( Tb ); |
| 120 |
|
|
| 121 |
|
// get the angular momentum, and propagate a half step |
| 122 |
|
|
| 123 |
< |
ji[0] = dAtom->getJx(); |
| 124 |
< |
ji[1] = dAtom->getJy(); |
| 125 |
< |
ji[2] = dAtom->getJz(); |
| 123 |
> |
dAtom->getJ( ji ); |
| 124 |
> |
|
| 125 |
> |
for (j=0; j < 3; j++) |
| 126 |
> |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
| 127 |
|
|
| 132 |
– |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
| 133 |
– |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
| 134 |
– |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
| 135 |
– |
|
| 128 |
|
// use the angular velocities to propagate the rotation matrix a |
| 129 |
|
// full time step |
| 130 |
< |
|
| 130 |
> |
|
| 131 |
> |
dAtom->getA(A); |
| 132 |
> |
dAtom->getI(I); |
| 133 |
> |
|
| 134 |
|
// rotate about the x-axis |
| 135 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
| 136 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
| 137 |
< |
|
| 135 |
> |
angle = dt2 * ji[0] / I[0][0]; |
| 136 |
> |
this->rotate( 1, 2, angle, ji, A ); |
| 137 |
> |
|
| 138 |
|
// rotate about the y-axis |
| 139 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
| 140 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
| 139 |
> |
angle = dt2 * ji[1] / I[1][1]; |
| 140 |
> |
this->rotate( 2, 0, angle, ji, A ); |
| 141 |
|
|
| 142 |
|
// rotate about the z-axis |
| 143 |
< |
angle = dt * ji[2] / dAtom->getIzz(); |
| 144 |
< |
this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); |
| 143 |
> |
angle = dt * ji[2] / I[2][2]; |
| 144 |
> |
this->rotate( 0, 1, angle, ji, A); |
| 145 |
|
|
| 146 |
|
// rotate about the y-axis |
| 147 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
| 148 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
| 147 |
> |
angle = dt2 * ji[1] / I[1][1]; |
| 148 |
> |
this->rotate( 2, 0, angle, ji, A ); |
| 149 |
|
|
| 150 |
|
// rotate about the x-axis |
| 151 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
| 152 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
| 151 |
> |
angle = dt2 * ji[0] / I[0][0]; |
| 152 |
> |
this->rotate( 1, 2, angle, ji, A ); |
| 153 |
|
|
| 154 |
< |
dAtom->setJx( ji[0] ); |
| 155 |
< |
dAtom->setJy( ji[1] ); |
| 156 |
< |
dAtom->setJz( ji[2] ); |
| 162 |
< |
} |
| 163 |
< |
|
| 154 |
> |
dAtom->setJ( ji ); |
| 155 |
> |
dAtom->setA( A ); |
| 156 |
> |
} |
| 157 |
|
} |
| 158 |
< |
|
| 158 |
> |
|
| 159 |
|
// Scale the box after all the positions have been moved: |
| 160 |
< |
|
| 160 |
> |
|
| 161 |
|
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
| 162 |
|
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
| 163 |
< |
|
| 164 |
< |
|
| 163 |
> |
|
| 164 |
> |
|
| 165 |
|
for(i=0; i<3; i++){ |
| 166 |
|
for(j=0; j<3; j++){ |
| 167 |
< |
ident[i][j] = 0.0; |
| 168 |
< |
eta1[i][j] = eta[3*i+j]; |
| 169 |
< |
eta2[i][j] = 0.0; |
| 167 |
> |
|
| 168 |
> |
// Calculate the matrix Product of the eta array (we only need |
| 169 |
> |
// the ij element right now): |
| 170 |
> |
|
| 171 |
> |
eta2ij = 0.0; |
| 172 |
|
for(k=0; k<3; k++){ |
| 173 |
< |
eta2[i][j] += eta[3*i+k] * eta[3*k+j]; |
| 173 |
> |
eta2ij += eta[i][k] * eta[k][j]; |
| 174 |
|
} |
| 175 |
< |
} |
| 176 |
< |
ident[i][i] = 1.0; |
| 177 |
< |
} |
| 178 |
< |
|
| 179 |
< |
|
| 180 |
< |
info->getBoxM(hm); |
| 181 |
< |
|
| 187 |
< |
for(i=0; i<3; i++){ |
| 188 |
< |
for(j=0; j<3; j++){ |
| 189 |
< |
hmnew[i][j] = 0.0; |
| 190 |
< |
for(k=0; k<3; k++){ |
| 191 |
< |
// remember that hmat has transpose ordering for Fortran compat: |
| 192 |
< |
hmnew[i][j] += hm[3*k+i] * (ident[k][j] |
| 193 |
< |
+ dt * eta1[k][j] |
| 194 |
< |
+ 0.5 * dt * dt * eta2[k][j]); |
| 195 |
< |
} |
| 175 |
> |
|
| 176 |
> |
scaleMat[i][j] = 0.0; |
| 177 |
> |
// identity matrix (see above): |
| 178 |
> |
if (i == j) scaleMat[i][j] = 1.0; |
| 179 |
> |
// Taylor expansion for the exponential truncated at second order: |
| 180 |
> |
scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij; |
| 181 |
> |
|
| 182 |
|
} |
| 183 |
|
} |
| 184 |
|
|
| 185 |
< |
for (i = 0; i < 3; i++) { |
| 186 |
< |
for (j = 0; j < 3; j++) { |
| 187 |
< |
// remember that hmat has transpose ordering for Fortran compat: |
| 202 |
< |
hm[3*j + 1] = hmnew[i][j]; |
| 203 |
< |
} |
| 204 |
< |
} |
| 205 |
< |
|
| 206 |
< |
info->setBoxM(hm); |
| 185 |
> |
info->getBoxM(hm); |
| 186 |
> |
info->matMul3(hm, scaleMat, hmnew); |
| 187 |
> |
info->setBoxM(hmnew); |
| 188 |
|
|
| 189 |
|
} |
| 190 |
|
|
| 191 |
|
void NPTf::moveB( void ){ |
| 192 |
< |
int i,j,k; |
| 193 |
< |
int atomIndex; |
| 192 |
> |
|
| 193 |
> |
int i, j; |
| 194 |
|
DirectionalAtom* dAtom; |
| 195 |
< |
double Tb[3]; |
| 196 |
< |
double ji[3]; |
| 197 |
< |
double press[9]; |
| 198 |
< |
double instaTemp, instaVol; |
| 195 |
> |
double Tb[3], ji[3]; |
| 196 |
> |
double vel[3], frc[3]; |
| 197 |
> |
double mass; |
| 198 |
> |
|
| 199 |
> |
double instaTemp, instaPress, instaVol; |
| 200 |
|
double tt2, tb2; |
| 201 |
< |
double vx, vy, vz; |
| 202 |
< |
double scx, scy, scz; |
| 221 |
< |
const double p_convert = 1.63882576e8; |
| 201 |
> |
double sc[3]; |
| 202 |
> |
double press[3][3], vScale[3][3]; |
| 203 |
|
|
| 204 |
|
tt2 = tauThermostat * tauThermostat; |
| 205 |
|
tb2 = tauBarostat * tauBarostat; |
| 206 |
|
|
| 207 |
|
instaTemp = tStats->getTemperature(); |
| 208 |
|
tStats->getPressureTensor(press); |
| 228 |
– |
|
| 229 |
– |
for (i=0; i < 9; i++) press[i] *= p_convert; |
| 230 |
– |
|
| 209 |
|
instaVol = tStats->getVolume(); |
| 210 |
|
|
| 211 |
|
// first evolve chi a half step |
| 212 |
|
|
| 213 |
|
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 214 |
|
|
| 215 |
< |
eta[0] += dt2 * instaVol * (press[0] - targetPressure) / (NkBT*tb2); |
| 216 |
< |
eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2); |
| 217 |
< |
eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2); |
| 240 |
< |
eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2); |
| 241 |
< |
eta[4] += dt2 * instaVol * (press[4] - targetPressure) / (NkBT*tb2); |
| 242 |
< |
eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2); |
| 243 |
< |
eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2); |
| 244 |
< |
eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2); |
| 245 |
< |
eta[8] += dt2 * instaVol * (press[8] - targetPressure) / (NkBT*tb2); |
| 215 |
> |
for (i = 0; i < 3; i++ ) { |
| 216 |
> |
for (j = 0; j < 3; j++ ) { |
| 217 |
> |
if (i == j) { |
| 218 |
|
|
| 219 |
+ |
eta[i][j] += dt2 * instaVol * |
| 220 |
+ |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
| 221 |
+ |
|
| 222 |
+ |
vScale[i][j] = eta[i][j] + chi; |
| 223 |
+ |
|
| 224 |
+ |
} else { |
| 225 |
+ |
|
| 226 |
+ |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
| 227 |
+ |
|
| 228 |
+ |
vScale[i][j] = eta[i][j]; |
| 229 |
+ |
|
| 230 |
+ |
} |
| 231 |
+ |
} |
| 232 |
+ |
} |
| 233 |
+ |
|
| 234 |
|
for( i=0; i<nAtoms; i++ ){ |
| 248 |
– |
atomIndex = i * 3; |
| 235 |
|
|
| 236 |
+ |
atoms[i]->getVel( vel ); |
| 237 |
+ |
atoms[i]->getFrc( frc ); |
| 238 |
+ |
|
| 239 |
+ |
mass = atoms[i]->getMass(); |
| 240 |
+ |
|
| 241 |
|
// velocity half step |
| 242 |
+ |
|
| 243 |
+ |
info->matVecMul3( vScale, vel, sc ); |
| 244 |
|
|
| 245 |
< |
vx = vel[atomIndex]; |
| 246 |
< |
vy = vel[atomIndex+1]; |
| 247 |
< |
vz = vel[atomIndex+2]; |
| 255 |
< |
|
| 256 |
< |
scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz; |
| 257 |
< |
scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz; |
| 258 |
< |
scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz; |
| 259 |
< |
|
| 260 |
< |
vx += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - scx); |
| 261 |
< |
vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy); |
| 262 |
< |
vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz); |
| 245 |
> |
for (j = 0; j < 3; j++) { |
| 246 |
> |
vel[j] += dt2 * ((frc[j] / mass) * eConvert - sc[j]); |
| 247 |
> |
} |
| 248 |
|
|
| 249 |
< |
vel[atomIndex] = vx; |
| 265 |
< |
vel[atomIndex+1] = vy; |
| 266 |
< |
vel[atomIndex+2] = vz; |
| 249 |
> |
atoms[i]->setVel( vel ); |
| 250 |
|
|
| 251 |
|
if( atoms[i]->isDirectional() ){ |
| 252 |
< |
|
| 252 |
> |
|
| 253 |
|
dAtom = (DirectionalAtom *)atoms[i]; |
| 254 |
< |
|
| 254 |
> |
|
| 255 |
|
// get and convert the torque to body frame |
| 256 |
|
|
| 257 |
< |
Tb[0] = dAtom->getTx(); |
| 275 |
< |
Tb[1] = dAtom->getTy(); |
| 276 |
< |
Tb[2] = dAtom->getTz(); |
| 277 |
< |
|
| 257 |
> |
dAtom->getTrq( Tb ); |
| 258 |
|
dAtom->lab2Body( Tb ); |
| 259 |
|
|
| 260 |
< |
// get the angular momentum, and complete the angular momentum |
| 281 |
< |
// half step |
| 260 |
> |
// get the angular momentum, and propagate a half step |
| 261 |
|
|
| 262 |
< |
ji[0] = dAtom->getJx(); |
| 284 |
< |
ji[1] = dAtom->getJy(); |
| 285 |
< |
ji[2] = dAtom->getJz(); |
| 262 |
> |
dAtom->getJ( ji ); |
| 263 |
|
|
| 264 |
< |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
| 265 |
< |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
| 289 |
< |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
| 264 |
> |
for (j=0; j < 3; j++) |
| 265 |
> |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
| 266 |
|
|
| 267 |
< |
dAtom->setJx( ji[0] ); |
| 268 |
< |
dAtom->setJy( ji[1] ); |
| 269 |
< |
dAtom->setJz( ji[2] ); |
| 294 |
< |
} |
| 267 |
> |
dAtom->setJ( ji ); |
| 268 |
> |
|
| 269 |
> |
} |
| 270 |
|
} |
| 271 |
|
} |
| 272 |
|
|
| 273 |
< |
int NPTi::readyCheck() { |
| 273 |
> |
int NPTf::readyCheck() { |
| 274 |
|
|
| 275 |
|
// First check to see if we have a target temperature. |
| 276 |
|
// Not having one is fatal. |
| 277 |
|
|
| 278 |
|
if (!have_target_temp) { |
| 279 |
|
sprintf( painCave.errMsg, |
| 280 |
< |
"NPTi error: You can't use the NPTi integrator\n" |
| 280 |
> |
"NPTf error: You can't use the NPTf integrator\n" |
| 281 |
|
" without a targetTemp!\n" |
| 282 |
|
); |
| 283 |
|
painCave.isFatal = 1; |
| 287 |
|
|
| 288 |
|
if (!have_target_pressure) { |
| 289 |
|
sprintf( painCave.errMsg, |
| 290 |
< |
"NPTi error: You can't use the NPTi integrator\n" |
| 290 |
> |
"NPTf error: You can't use the NPTf integrator\n" |
| 291 |
|
" without a targetPressure!\n" |
| 292 |
|
); |
| 293 |
|
painCave.isFatal = 1; |
| 299 |
|
|
| 300 |
|
if (!have_tau_thermostat) { |
| 301 |
|
sprintf( painCave.errMsg, |
| 302 |
< |
"NPTi error: If you use the NPTi\n" |
| 302 |
> |
"NPTf error: If you use the NPTf\n" |
| 303 |
|
" integrator, you must set tauThermostat.\n"); |
| 304 |
|
painCave.isFatal = 1; |
| 305 |
|
simError(); |
| 310 |
|
|
| 311 |
|
if (!have_tau_barostat) { |
| 312 |
|
sprintf( painCave.errMsg, |
| 313 |
< |
"NPTi error: If you use the NPTi\n" |
| 313 |
> |
"NPTf error: If you use the NPTf\n" |
| 314 |
|
" integrator, you must set tauBarostat.\n"); |
| 315 |
|
painCave.isFatal = 1; |
| 316 |
|
simError(); |