| 25 |
|
{ |
| 26 |
|
int i, j; |
| 27 |
|
chi = 0.0; |
| 28 |
+ |
integralOfChidt = 0.0; |
| 29 |
|
|
| 30 |
|
for(i = 0; i < 3; i++) |
| 31 |
|
for (j = 0; j < 3; j++) |
| 35 |
|
have_tau_barostat = 0; |
| 36 |
|
have_target_temp = 0; |
| 37 |
|
have_target_pressure = 0; |
| 38 |
+ |
|
| 39 |
+ |
have_chi_tolerance = 0; |
| 40 |
+ |
have_eta_tolerance = 0; |
| 41 |
+ |
have_pos_iter_tolerance = 0; |
| 42 |
+ |
|
| 43 |
+ |
oldPos = new double[3*nAtoms]; |
| 44 |
+ |
oldVel = new double[3*nAtoms]; |
| 45 |
+ |
oldJi = new double[3*nAtoms]; |
| 46 |
+ |
#ifdef IS_MPI |
| 47 |
+ |
Nparticles = mpiSim->getTotAtoms(); |
| 48 |
+ |
#else |
| 49 |
+ |
Nparticles = theInfo->n_atoms; |
| 50 |
+ |
#endif |
| 51 |
|
} |
| 52 |
|
|
| 53 |
+ |
template<typename T> NPTf<T>::~NPTf() { |
| 54 |
+ |
delete[] oldPos; |
| 55 |
+ |
delete[] oldVel; |
| 56 |
+ |
delete[] oldJi; |
| 57 |
+ |
} |
| 58 |
+ |
|
| 59 |
|
template<typename T> void NPTf<T>::moveA() { |
| 60 |
|
|
| 61 |
|
int i, j, k; |
| 72 |
|
double eta2ij; |
| 73 |
|
double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3]; |
| 74 |
|
double bigScale, smallScale, offDiagMax; |
| 75 |
+ |
double COM[3]; |
| 76 |
|
|
| 77 |
|
tt2 = tauThermostat * tauThermostat; |
| 78 |
|
tb2 = tauBarostat * tauBarostat; |
| 80 |
|
instaTemp = tStats->getTemperature(); |
| 81 |
|
tStats->getPressureTensor(press); |
| 82 |
|
instaVol = tStats->getVolume(); |
| 62 |
– |
|
| 63 |
– |
// first evolve chi a half step |
| 83 |
|
|
| 84 |
< |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 84 |
> |
tStats->getCOM(COM); |
| 85 |
|
|
| 86 |
+ |
//calculate scale factor of veloity |
| 87 |
|
for (i = 0; i < 3; i++ ) { |
| 88 |
|
for (j = 0; j < 3; j++ ) { |
| 89 |
+ |
vScale[i][j] = eta[i][j]; |
| 90 |
+ |
|
| 91 |
|
if (i == j) { |
| 92 |
< |
|
| 93 |
< |
eta[i][j] += dt2 * instaVol * |
| 72 |
< |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
| 73 |
< |
|
| 74 |
< |
vScale[i][j] = eta[i][j] + chi; |
| 75 |
< |
|
| 76 |
< |
} else { |
| 77 |
< |
|
| 78 |
< |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
| 79 |
< |
|
| 80 |
< |
vScale[i][j] = eta[i][j]; |
| 81 |
< |
|
| 82 |
< |
} |
| 92 |
> |
vScale[i][j] += chi; |
| 93 |
> |
} |
| 94 |
|
} |
| 95 |
|
} |
| 96 |
< |
|
| 96 |
> |
|
| 97 |
> |
//evolve velocity half step |
| 98 |
|
for( i=0; i<nAtoms; i++ ){ |
| 99 |
|
|
| 100 |
|
atoms[i]->getVel( vel ); |
| 89 |
– |
atoms[i]->getPos( pos ); |
| 101 |
|
atoms[i]->getFrc( frc ); |
| 102 |
|
|
| 103 |
|
mass = atoms[i]->getMass(); |
| 104 |
|
|
| 94 |
– |
// velocity half step |
| 95 |
– |
|
| 105 |
|
info->matVecMul3( vScale, vel, sc ); |
| 106 |
< |
|
| 107 |
< |
for (j = 0; j < 3; j++) { |
| 106 |
> |
|
| 107 |
> |
for (j=0; j < 3; j++) { |
| 108 |
> |
// velocity half step (use chi from previous step here): |
| 109 |
|
vel[j] += dt2 * ((frc[j] / mass) * eConvert - sc[j]); |
| 110 |
< |
rj[j] = pos[j]; |
| 110 |
> |
|
| 111 |
|
} |
| 112 |
|
|
| 113 |
|
atoms[i]->setVel( vel ); |
| 104 |
– |
|
| 105 |
– |
// position whole step |
| 106 |
– |
|
| 107 |
– |
info->wrapVector(rj); |
| 108 |
– |
|
| 109 |
– |
info->matVecMul3( eta, rj, sc ); |
| 110 |
– |
|
| 111 |
– |
for (j = 0; j < 3; j++ ) |
| 112 |
– |
pos[j] += dt * (vel[j] + sc[j]); |
| 113 |
– |
|
| 114 |
– |
atoms[i]->setPos( pos ); |
| 114 |
|
|
| 115 |
|
if( atoms[i]->isDirectional() ){ |
| 116 |
|
|
| 117 |
|
dAtom = (DirectionalAtom *)atoms[i]; |
| 118 |
< |
|
| 118 |
> |
|
| 119 |
|
// get and convert the torque to body frame |
| 120 |
|
|
| 121 |
|
dAtom->getTrq( Tb ); |
| 156 |
|
|
| 157 |
|
dAtom->setJ( ji ); |
| 158 |
|
dAtom->setA( A ); |
| 159 |
< |
} |
| 159 |
> |
} |
| 160 |
|
} |
| 161 |
+ |
|
| 162 |
+ |
// advance chi half step |
| 163 |
+ |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 164 |
+ |
|
| 165 |
+ |
//calculate the integral of chidt |
| 166 |
+ |
integralOfChidt += dt2*chi; |
| 167 |
+ |
|
| 168 |
+ |
//advance eta half step |
| 169 |
+ |
for(i = 0; i < 3; i ++) |
| 170 |
+ |
for(j = 0; j < 3; j++){ |
| 171 |
+ |
if( i == j) |
| 172 |
+ |
eta[i][j] += dt2 * instaVol * |
| 173 |
+ |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
| 174 |
+ |
else |
| 175 |
+ |
eta[i][j] += dt2 * instaVol * press[i][j] / ( NkBT*tb2); |
| 176 |
+ |
} |
| 177 |
+ |
|
| 178 |
+ |
//save the old positions |
| 179 |
+ |
for(i = 0; i < nAtoms; i++){ |
| 180 |
+ |
atoms[i]->getPos(pos); |
| 181 |
+ |
for(j = 0; j < 3; j++) |
| 182 |
+ |
oldPos[i*3 + j] = pos[j]; |
| 183 |
+ |
} |
| 184 |
|
|
| 185 |
+ |
//the first estimation of r(t+dt) is equal to r(t) |
| 186 |
+ |
|
| 187 |
+ |
for(k = 0; k < 4; k ++){ |
| 188 |
+ |
|
| 189 |
+ |
for(i =0 ; i < nAtoms; i++){ |
| 190 |
+ |
|
| 191 |
+ |
atoms[i]->getVel(vel); |
| 192 |
+ |
atoms[i]->getPos(pos); |
| 193 |
+ |
|
| 194 |
+ |
for(j = 0; j < 3; j++) |
| 195 |
+ |
rj[j] = (oldPos[i*3 + j] + pos[j])/2 - COM[j]; |
| 196 |
+ |
|
| 197 |
+ |
info->matVecMul3( eta, rj, sc ); |
| 198 |
+ |
|
| 199 |
+ |
for(j = 0; j < 3; j++) |
| 200 |
+ |
pos[j] = oldPos[i*3 + j] + dt*(vel[j] + sc[j]); |
| 201 |
+ |
|
| 202 |
+ |
atoms[i]->setPos( pos ); |
| 203 |
+ |
|
| 204 |
+ |
} |
| 205 |
+ |
|
| 206 |
+ |
} |
| 207 |
+ |
|
| 208 |
+ |
|
| 209 |
|
// Scale the box after all the positions have been moved: |
| 210 |
|
|
| 211 |
|
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
| 235 |
|
if (i != j) |
| 236 |
|
if (fabs(scaleMat[i][j]) > offDiagMax) |
| 237 |
|
offDiagMax = fabs(scaleMat[i][j]); |
| 192 |
– |
|
| 238 |
|
} |
| 239 |
|
|
| 240 |
|
if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; |
| 275 |
|
|
| 276 |
|
template<typename T> void NPTf<T>::moveB( void ){ |
| 277 |
|
|
| 278 |
< |
int i, j; |
| 278 |
> |
int i, j, k; |
| 279 |
|
DirectionalAtom* dAtom; |
| 280 |
|
double Tb[3], ji[3]; |
| 281 |
|
double vel[3], frc[3]; |
| 285 |
|
double tt2, tb2; |
| 286 |
|
double sc[3]; |
| 287 |
|
double press[3][3], vScale[3][3]; |
| 288 |
+ |
double oldChi, prevChi; |
| 289 |
+ |
double oldEta[3][3], preEta[3][3], diffEta; |
| 290 |
|
|
| 291 |
|
tt2 = tauThermostat * tauThermostat; |
| 292 |
|
tb2 = tauBarostat * tauBarostat; |
| 293 |
|
|
| 247 |
– |
instaTemp = tStats->getTemperature(); |
| 248 |
– |
tStats->getPressureTensor(press); |
| 249 |
– |
instaVol = tStats->getVolume(); |
| 250 |
– |
|
| 251 |
– |
// first evolve chi a half step |
| 252 |
– |
|
| 253 |
– |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 254 |
– |
|
| 255 |
– |
for (i = 0; i < 3; i++ ) { |
| 256 |
– |
for (j = 0; j < 3; j++ ) { |
| 257 |
– |
if (i == j) { |
| 294 |
|
|
| 295 |
< |
eta[i][j] += dt2 * instaVol * |
| 260 |
< |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
| 295 |
> |
// Set things up for the iteration: |
| 296 |
|
|
| 297 |
< |
vScale[i][j] = eta[i][j] + chi; |
| 298 |
< |
|
| 299 |
< |
} else { |
| 300 |
< |
|
| 301 |
< |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
| 297 |
> |
oldChi = chi; |
| 298 |
> |
|
| 299 |
> |
for(i = 0; i < 3; i++) |
| 300 |
> |
for(j = 0; j < 3; j++) |
| 301 |
> |
oldEta[i][j] = eta[i][j]; |
| 302 |
|
|
| 268 |
– |
vScale[i][j] = eta[i][j]; |
| 269 |
– |
|
| 270 |
– |
} |
| 271 |
– |
} |
| 272 |
– |
} |
| 273 |
– |
|
| 303 |
|
for( i=0; i<nAtoms; i++ ){ |
| 304 |
|
|
| 305 |
|
atoms[i]->getVel( vel ); |
| 277 |
– |
atoms[i]->getFrc( frc ); |
| 306 |
|
|
| 307 |
< |
mass = atoms[i]->getMass(); |
| 308 |
< |
|
| 281 |
< |
// velocity half step |
| 282 |
< |
|
| 283 |
< |
info->matVecMul3( vScale, vel, sc ); |
| 284 |
< |
|
| 285 |
< |
for (j = 0; j < 3; j++) { |
| 286 |
< |
vel[j] += dt2 * ((frc[j] / mass) * eConvert - sc[j]); |
| 287 |
< |
} |
| 307 |
> |
for (j=0; j < 3; j++) |
| 308 |
> |
oldVel[3*i + j] = vel[j]; |
| 309 |
|
|
| 289 |
– |
atoms[i]->setVel( vel ); |
| 290 |
– |
|
| 310 |
|
if( atoms[i]->isDirectional() ){ |
| 311 |
|
|
| 312 |
|
dAtom = (DirectionalAtom *)atoms[i]; |
| 313 |
< |
|
| 314 |
< |
// get and convert the torque to body frame |
| 313 |
> |
|
| 314 |
> |
dAtom->getJ( ji ); |
| 315 |
> |
|
| 316 |
> |
for (j=0; j < 3; j++) |
| 317 |
> |
oldJi[3*i + j] = ji[j]; |
| 318 |
> |
|
| 319 |
> |
} |
| 320 |
> |
} |
| 321 |
> |
|
| 322 |
> |
// do the iteration: |
| 323 |
> |
|
| 324 |
> |
instaVol = tStats->getVolume(); |
| 325 |
> |
|
| 326 |
> |
for (k=0; k < 4; k++) { |
| 327 |
> |
|
| 328 |
> |
instaTemp = tStats->getTemperature(); |
| 329 |
> |
tStats->getPressureTensor(press); |
| 330 |
> |
|
| 331 |
> |
// evolve chi another half step using the temperature at t + dt/2 |
| 332 |
> |
|
| 333 |
> |
prevChi = chi; |
| 334 |
> |
chi = oldChi + dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 335 |
> |
|
| 336 |
> |
for(i = 0; i < 3; i++) |
| 337 |
> |
for(j = 0; j < 3; j++) |
| 338 |
> |
preEta[i][j] = eta[i][j]; |
| 339 |
> |
|
| 340 |
> |
//advance eta half step and calculate scale factor for velocity |
| 341 |
> |
for(i = 0; i < 3; i ++) |
| 342 |
> |
for(j = 0; j < 3; j++){ |
| 343 |
> |
if( i == j){ |
| 344 |
> |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
| 345 |
> |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
| 346 |
> |
vScale[i][j] = eta[i][j] + chi; |
| 347 |
> |
} |
| 348 |
> |
else |
| 349 |
> |
{ |
| 350 |
> |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2); |
| 351 |
> |
vScale[i][j] = eta[i][j]; |
| 352 |
> |
} |
| 353 |
> |
} |
| 354 |
> |
|
| 355 |
> |
//advance velocity half step |
| 356 |
> |
for( i=0; i<nAtoms; i++ ){ |
| 357 |
> |
|
| 358 |
> |
atoms[i]->getFrc( frc ); |
| 359 |
> |
atoms[i]->getVel(vel); |
| 360 |
|
|
| 361 |
< |
dAtom->getTrq( Tb ); |
| 298 |
< |
dAtom->lab2Body( Tb ); |
| 361 |
> |
mass = atoms[i]->getMass(); |
| 362 |
|
|
| 363 |
< |
// get the angular momentum, and propagate a half step |
| 363 |
> |
info->matVecMul3( vScale, vel, sc ); |
| 364 |
> |
|
| 365 |
> |
for (j=0; j < 3; j++) { |
| 366 |
> |
// velocity half step (use chi from previous step here): |
| 367 |
> |
vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass) * eConvert - sc[j]); |
| 368 |
> |
} |
| 369 |
|
|
| 370 |
< |
dAtom->getJ( ji ); |
| 370 |
> |
atoms[i]->setVel( vel ); |
| 371 |
|
|
| 372 |
< |
for (j=0; j < 3; j++) |
| 373 |
< |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
| 372 |
> |
if( atoms[i]->isDirectional() ){ |
| 373 |
> |
|
| 374 |
> |
dAtom = (DirectionalAtom *)atoms[i]; |
| 375 |
> |
|
| 376 |
> |
// get and convert the torque to body frame |
| 377 |
> |
|
| 378 |
> |
dAtom->getTrq( Tb ); |
| 379 |
> |
dAtom->lab2Body( Tb ); |
| 380 |
> |
|
| 381 |
> |
for (j=0; j < 3; j++) |
| 382 |
> |
ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); |
| 383 |
|
|
| 384 |
< |
dAtom->setJ( ji ); |
| 384 |
> |
dAtom->setJ( ji ); |
| 385 |
> |
} |
| 386 |
> |
} |
| 387 |
|
|
| 388 |
< |
} |
| 388 |
> |
|
| 389 |
> |
diffEta = 0; |
| 390 |
> |
for(i = 0; i < 3; i++) |
| 391 |
> |
diffEta += pow(preEta[i][i] - eta[i][i], 2); |
| 392 |
> |
|
| 393 |
> |
if (fabs(prevChi - chi) <= chiTolerance && sqrt(diffEta / 3) <= etaTolerance) |
| 394 |
> |
break; |
| 395 |
|
} |
| 396 |
+ |
|
| 397 |
+ |
//calculate integral of chida |
| 398 |
+ |
integralOfChidt += dt2*chi; |
| 399 |
+ |
|
| 400 |
+ |
|
| 401 |
|
} |
| 402 |
|
|
| 403 |
+ |
template<typename T> void NPTf<T>::resetIntegrator() { |
| 404 |
+ |
int i,j; |
| 405 |
+ |
|
| 406 |
+ |
chi = 0.0; |
| 407 |
+ |
|
| 408 |
+ |
for(i = 0; i < 3; i++) |
| 409 |
+ |
for (j = 0; j < 3; j++) |
| 410 |
+ |
eta[i][j] = 0.0; |
| 411 |
+ |
|
| 412 |
+ |
} |
| 413 |
+ |
|
| 414 |
|
template<typename T> int NPTf<T>::readyCheck() { |
| 415 |
|
|
| 416 |
|
//check parent's readyCheck() first |
| 464 |
|
|
| 465 |
|
// We need NkBT a lot, so just set it here: |
| 466 |
|
|
| 467 |
< |
NkBT = (double)info->ndf * kB * targetTemp; |
| 467 |
> |
NkBT = (double)Nparticles * kB * targetTemp; |
| 468 |
> |
fkBT = (double)info->ndf * kB * targetTemp; |
| 469 |
|
|
| 470 |
|
return 1; |
| 471 |
|
} |
| 472 |
+ |
|
| 473 |
+ |
template<typename T> double NPTf<T>::getConservedQuantity(void){ |
| 474 |
+ |
|
| 475 |
+ |
double conservedQuantity; |
| 476 |
+ |
double tb2; |
| 477 |
+ |
double trEta; |
| 478 |
+ |
double U; |
| 479 |
+ |
double thermo; |
| 480 |
+ |
double integral; |
| 481 |
+ |
double baro; |
| 482 |
+ |
double PV; |
| 483 |
+ |
|
| 484 |
+ |
U = tStats->getTotalE(); |
| 485 |
+ |
thermo = (fkBT * tauThermostat * tauThermostat * chi * chi / 2.0) / eConvert; |
| 486 |
+ |
|
| 487 |
+ |
tb2 = tauBarostat * tauBarostat; |
| 488 |
+ |
trEta = info->matTrace3(eta); |
| 489 |
+ |
baro = ((double)info->ndfTrans * kB * targetTemp * tb2 * trEta * trEta / 2.0) / eConvert; |
| 490 |
+ |
|
| 491 |
+ |
integral = ((double)(info->ndf + 1) * kB * targetTemp * integralOfChidt) /eConvert; |
| 492 |
+ |
|
| 493 |
+ |
PV = (targetPressure * tStats->getVolume() / p_convert) / eConvert; |
| 494 |
+ |
|
| 495 |
+ |
|
| 496 |
+ |
cout.width(8); |
| 497 |
+ |
cout.precision(8); |
| 498 |
+ |
|
| 499 |
+ |
cout << info->getTime() << "\t" |
| 500 |
+ |
<< chi << "\t" |
| 501 |
+ |
<< trEta << "\t" |
| 502 |
+ |
<< U << "\t" |
| 503 |
+ |
<< thermo << "\t" |
| 504 |
+ |
<< baro << "\t" |
| 505 |
+ |
<< integral << "\t" |
| 506 |
+ |
<< PV << "\t" |
| 507 |
+ |
<< U+thermo+integral+PV+baro << endl; |
| 508 |
+ |
|
| 509 |
+ |
conservedQuantity = U+thermo+integral+PV+baro; |
| 510 |
+ |
return conservedQuantity; |
| 511 |
+ |
|
| 512 |
+ |
} |