1 |
< |
#include <cmath> |
1 |
> |
#include <math.h> |
2 |
> |
|
3 |
> |
#include "MatVec3.h" |
4 |
|
#include "Atom.hpp" |
5 |
|
#include "SRI.hpp" |
6 |
|
#include "AbstractClasses.hpp" |
9 |
|
#include "Thermo.hpp" |
10 |
|
#include "ReadWrite.hpp" |
11 |
|
#include "Integrator.hpp" |
12 |
< |
#include "simError.h" |
12 |
> |
#include "simError.h" |
13 |
|
|
14 |
|
#ifdef IS_MPI |
15 |
|
#include "mpiSimulation.hpp" |
19 |
|
// modification of the Hoover algorithm: |
20 |
|
// |
21 |
|
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
22 |
< |
// Molec. Phys., 78, 533. |
22 |
> |
// Molec. Phys., 78, 533. |
23 |
|
// |
24 |
|
// and |
25 |
< |
// |
25 |
> |
// |
26 |
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
27 |
|
|
28 |
|
template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
29 |
|
T( theInfo, the_ff ) |
30 |
|
{ |
31 |
< |
int i, j; |
32 |
< |
chi = 0.0; |
33 |
< |
integralOfChidt = 0.0; |
31 |
> |
GenericData* data; |
32 |
> |
DoubleArrayData * etaValue; |
33 |
> |
vector<double> etaArray; |
34 |
> |
int i,j; |
35 |
|
|
36 |
< |
for(i = 0; i < 3; i++) |
37 |
< |
for (j = 0; j < 3; j++) |
36 |
> |
for(i = 0; i < 3; i++){ |
37 |
> |
for (j = 0; j < 3; j++){ |
38 |
> |
|
39 |
|
eta[i][j] = 0.0; |
40 |
+ |
oldEta[i][j] = 0.0; |
41 |
+ |
} |
42 |
+ |
} |
43 |
|
|
37 |
– |
have_tau_thermostat = 0; |
38 |
– |
have_tau_barostat = 0; |
39 |
– |
have_target_temp = 0; |
40 |
– |
have_target_pressure = 0; |
44 |
|
|
45 |
< |
have_chi_tolerance = 0; |
46 |
< |
have_eta_tolerance = 0; |
47 |
< |
have_pos_iter_tolerance = 0; |
45 |
> |
if( theInfo->useInitXSstate ){ |
46 |
> |
// retrieve eta array from simInfo if it exists |
47 |
> |
data = info->getProperty(ETAVALUE_ID); |
48 |
> |
if(data){ |
49 |
> |
etaValue = dynamic_cast<DoubleArrayData*>(data); |
50 |
> |
|
51 |
> |
if(etaValue){ |
52 |
> |
etaArray = etaValue->getData(); |
53 |
> |
|
54 |
> |
for(i = 0; i < 3; i++){ |
55 |
> |
for (j = 0; j < 3; j++){ |
56 |
> |
eta[i][j] = etaArray[3*i+j]; |
57 |
> |
oldEta[i][j] = eta[i][j]; |
58 |
> |
} |
59 |
> |
} |
60 |
> |
} |
61 |
> |
} |
62 |
> |
} |
63 |
|
|
46 |
– |
oldPos = new double[3*nAtoms]; |
47 |
– |
oldVel = new double[3*nAtoms]; |
48 |
– |
oldJi = new double[3*nAtoms]; |
49 |
– |
#ifdef IS_MPI |
50 |
– |
Nparticles = mpiSim->getTotAtoms(); |
51 |
– |
#else |
52 |
– |
Nparticles = theInfo->n_atoms; |
53 |
– |
#endif |
54 |
– |
|
64 |
|
} |
65 |
|
|
66 |
|
template<typename T> NPTf<T>::~NPTf() { |
67 |
< |
delete[] oldPos; |
68 |
< |
delete[] oldVel; |
60 |
< |
delete[] oldJi; |
67 |
> |
|
68 |
> |
// empty for now |
69 |
|
} |
70 |
|
|
71 |
< |
template<typename T> void NPTf<T>::moveA() { |
71 |
> |
template<typename T> void NPTf<T>::resetIntegrator() { |
72 |
|
|
73 |
< |
// new version of NPTf |
66 |
< |
int i, j, k; |
67 |
< |
DirectionalAtom* dAtom; |
68 |
< |
double Tb[3], ji[3]; |
73 |
> |
int i, j; |
74 |
|
|
75 |
< |
double mass; |
76 |
< |
double vel[3], pos[3], frc[3]; |
75 |
> |
for(i = 0; i < 3; i++) |
76 |
> |
for (j = 0; j < 3; j++) |
77 |
> |
eta[i][j] = 0.0; |
78 |
|
|
79 |
< |
double rj[3]; |
80 |
< |
double instaTemp, instaPress, instaVol; |
75 |
< |
double tt2, tb2; |
76 |
< |
double sc[3]; |
77 |
< |
double eta2ij; |
78 |
< |
double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3]; |
79 |
< |
double bigScale, smallScale, offDiagMax; |
80 |
< |
double COM[3]; |
79 |
> |
T::resetIntegrator(); |
80 |
> |
} |
81 |
|
|
82 |
< |
tt2 = tauThermostat * tauThermostat; |
83 |
< |
tb2 = tauBarostat * tauBarostat; |
82 |
> |
template<typename T> void NPTf<T>::evolveEtaA() { |
83 |
|
|
84 |
< |
instaTemp = tStats->getTemperature(); |
86 |
< |
tStats->getPressureTensor(press); |
87 |
< |
instaVol = tStats->getVolume(); |
88 |
< |
|
89 |
< |
tStats->getCOM(COM); |
84 |
> |
int i, j; |
85 |
|
|
86 |
< |
//calculate scale factor of veloity |
87 |
< |
for (i = 0; i < 3; i++ ) { |
88 |
< |
for (j = 0; j < 3; j++ ) { |
89 |
< |
vScale[i][j] = eta[i][j]; |
90 |
< |
|
91 |
< |
if (i == j) { |
92 |
< |
vScale[i][j] += chi; |
98 |
< |
} |
86 |
> |
for(i = 0; i < 3; i ++){ |
87 |
> |
for(j = 0; j < 3; j++){ |
88 |
> |
if( i == j) |
89 |
> |
eta[i][j] += dt2 * instaVol * |
90 |
> |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
91 |
> |
else |
92 |
> |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
93 |
|
} |
94 |
|
} |
95 |
|
|
96 |
< |
//evolve velocity half step |
97 |
< |
for( i=0; i<nAtoms; i++ ){ |
96 |
> |
for(i = 0; i < 3; i++) |
97 |
> |
for (j = 0; j < 3; j++) |
98 |
> |
oldEta[i][j] = eta[i][j]; |
99 |
> |
} |
100 |
|
|
101 |
< |
atoms[i]->getVel( vel ); |
106 |
< |
atoms[i]->getFrc( frc ); |
101 |
> |
template<typename T> void NPTf<T>::evolveEtaB() { |
102 |
|
|
103 |
< |
mass = atoms[i]->getMass(); |
109 |
< |
|
110 |
< |
info->matVecMul3( vScale, vel, sc ); |
103 |
> |
int i,j; |
104 |
|
|
105 |
< |
for (j=0; j < 3; j++) { |
106 |
< |
// velocity half step |
107 |
< |
vel[j] += dt2 * ((frc[j] / mass) * eConvert - sc[j]); |
105 |
> |
for(i = 0; i < 3; i++) |
106 |
> |
for (j = 0; j < 3; j++) |
107 |
> |
prevEta[i][j] = eta[i][j]; |
108 |
> |
|
109 |
> |
for(i = 0; i < 3; i ++){ |
110 |
> |
for(j = 0; j < 3; j++){ |
111 |
> |
if( i == j) { |
112 |
> |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
113 |
> |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
114 |
> |
} else { |
115 |
> |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2); |
116 |
> |
} |
117 |
|
} |
118 |
+ |
} |
119 |
+ |
} |
120 |
|
|
121 |
< |
atoms[i]->setVel( vel ); |
122 |
< |
|
119 |
< |
if( atoms[i]->isDirectional() ){ |
121 |
> |
template<typename T> void NPTf<T>::calcVelScale(void){ |
122 |
> |
int i,j; |
123 |
|
|
124 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
124 |
> |
for (i = 0; i < 3; i++ ) { |
125 |
> |
for (j = 0; j < 3; j++ ) { |
126 |
> |
vScale[i][j] = eta[i][j]; |
127 |
|
|
128 |
< |
// get and convert the torque to body frame |
129 |
< |
|
130 |
< |
dAtom->getTrq( Tb ); |
131 |
< |
dAtom->lab2Body( Tb ); |
127 |
< |
|
128 |
< |
// get the angular momentum, and propagate a half step |
129 |
< |
|
130 |
< |
dAtom->getJ( ji ); |
131 |
< |
|
132 |
< |
for (j=0; j < 3; j++) |
133 |
< |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
134 |
< |
|
135 |
< |
this->rotationPropagation( dAtom, ji ); |
136 |
< |
|
137 |
< |
dAtom->setJ( ji ); |
138 |
< |
} |
128 |
> |
if (i == j) { |
129 |
> |
vScale[i][j] += chi; |
130 |
> |
} |
131 |
> |
} |
132 |
|
} |
133 |
+ |
} |
134 |
|
|
135 |
< |
// advance chi half step |
136 |
< |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
135 |
> |
template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) { |
136 |
> |
|
137 |
> |
matVecMul3( vScale, vel, sc ); |
138 |
> |
} |
139 |
|
|
140 |
< |
// calculate the integral of chidt |
141 |
< |
integralOfChidt += dt2*chi; |
140 |
> |
template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){ |
141 |
> |
int j; |
142 |
> |
double myVel[3]; |
143 |
|
|
144 |
< |
// advance eta half step |
145 |
< |
|
149 |
< |
for(i = 0; i < 3; i ++) |
150 |
< |
for(j = 0; j < 3; j++){ |
151 |
< |
if( i == j) |
152 |
< |
eta[i][j] += dt2 * instaVol * |
153 |
< |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
154 |
< |
else |
155 |
< |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
156 |
< |
} |
157 |
< |
|
158 |
< |
//save the old positions |
159 |
< |
for(i = 0; i < nAtoms; i++){ |
160 |
< |
atoms[i]->getPos(pos); |
161 |
< |
for(j = 0; j < 3; j++) |
162 |
< |
oldPos[i*3 + j] = pos[j]; |
163 |
< |
} |
144 |
> |
for (j = 0; j < 3; j++) |
145 |
> |
myVel[j] = oldVel[3*index + j]; |
146 |
|
|
147 |
< |
//the first estimation of r(t+dt) is equal to r(t) |
148 |
< |
|
167 |
< |
for(k = 0; k < 4; k ++){ |
147 |
> |
matVecMul3( vScale, myVel, sc ); |
148 |
> |
} |
149 |
|
|
150 |
< |
for(i =0 ; i < nAtoms; i++){ |
150 |
> |
template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3], |
151 |
> |
int index, double sc[3]){ |
152 |
> |
int j; |
153 |
> |
double rj[3]; |
154 |
|
|
155 |
< |
atoms[i]->getVel(vel); |
156 |
< |
atoms[i]->getPos(pos); |
155 |
> |
for(j=0; j<3; j++) |
156 |
> |
rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; |
157 |
|
|
158 |
< |
for(j = 0; j < 3; j++) |
159 |
< |
rj[j] = (oldPos[i*3 + j] + pos[j])/2 - COM[j]; |
176 |
< |
|
177 |
< |
info->matVecMul3( eta, rj, sc ); |
178 |
< |
|
179 |
< |
for(j = 0; j < 3; j++) |
180 |
< |
pos[j] = oldPos[i*3 + j] + dt*(vel[j] + sc[j]); |
158 |
> |
matVecMul3( eta, rj, sc ); |
159 |
> |
} |
160 |
|
|
161 |
< |
atoms[i]->setPos( pos ); |
161 |
> |
template<typename T> void NPTf<T>::scaleSimBox( void ){ |
162 |
|
|
163 |
< |
} |
163 |
> |
int i,j,k; |
164 |
> |
double scaleMat[3][3]; |
165 |
> |
double eta2ij; |
166 |
> |
double bigScale, smallScale, offDiagMax; |
167 |
> |
double hm[3][3], hmnew[3][3]; |
168 |
|
|
186 |
– |
if (nConstrained) { |
187 |
– |
constrainA(); |
188 |
– |
} |
189 |
– |
} |
169 |
|
|
170 |
< |
|
170 |
> |
|
171 |
|
// Scale the box after all the positions have been moved: |
172 |
< |
|
172 |
> |
|
173 |
|
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
174 |
|
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
175 |
< |
|
175 |
> |
|
176 |
|
bigScale = 1.0; |
177 |
|
smallScale = 1.0; |
178 |
|
offDiagMax = 0.0; |
179 |
< |
|
179 |
> |
|
180 |
|
for(i=0; i<3; i++){ |
181 |
|
for(j=0; j<3; j++){ |
182 |
< |
|
182 |
> |
|
183 |
|
// Calculate the matrix Product of the eta array (we only need |
184 |
|
// the ij element right now): |
185 |
< |
|
185 |
> |
|
186 |
|
eta2ij = 0.0; |
187 |
|
for(k=0; k<3; k++){ |
188 |
|
eta2ij += eta[i][k] * eta[k][j]; |
189 |
|
} |
190 |
< |
|
190 |
> |
|
191 |
|
scaleMat[i][j] = 0.0; |
192 |
|
// identity matrix (see above): |
193 |
|
if (i == j) scaleMat[i][j] = 1.0; |
194 |
|
// Taylor expansion for the exponential truncated at second order: |
195 |
|
scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij; |
196 |
+ |
|
197 |
|
|
198 |
|
if (i != j) |
199 |
< |
if (fabs(scaleMat[i][j]) > offDiagMax) |
199 |
> |
if (fabs(scaleMat[i][j]) > offDiagMax) |
200 |
|
offDiagMax = fabs(scaleMat[i][j]); |
201 |
|
} |
202 |
|
|
203 |
|
if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; |
204 |
|
if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; |
205 |
|
} |
206 |
< |
|
207 |
< |
if ((bigScale > 1.1) || (smallScale < 0.9)) { |
206 |
> |
|
207 |
> |
if ((bigScale > 1.01) || (smallScale < 0.99)) { |
208 |
|
sprintf( painCave.errMsg, |
209 |
< |
"NPTf error: Attempting a Box scaling of more than 10 percent.\n" |
209 |
> |
"NPTf error: Attempting a Box scaling of more than 1 percent.\n" |
210 |
|
" Check your tauBarostat, as it is probably too small!\n\n" |
211 |
|
" scaleMat = [%lf\t%lf\t%lf]\n" |
212 |
|
" [%lf\t%lf\t%lf]\n" |
213 |
+ |
" [%lf\t%lf\t%lf]\n" |
214 |
+ |
" eta = [%lf\t%lf\t%lf]\n" |
215 |
+ |
" [%lf\t%lf\t%lf]\n" |
216 |
|
" [%lf\t%lf\t%lf]\n", |
217 |
|
scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
218 |
|
scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
219 |
< |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
219 |
> |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2], |
220 |
> |
eta[0][0],eta[0][1],eta[0][2], |
221 |
> |
eta[1][0],eta[1][1],eta[1][2], |
222 |
> |
eta[2][0],eta[2][1],eta[2][2]); |
223 |
|
painCave.isFatal = 1; |
224 |
|
simError(); |
225 |
< |
} else if (offDiagMax > 0.1) { |
225 |
> |
} else if (offDiagMax > 0.01) { |
226 |
|
sprintf( painCave.errMsg, |
227 |
< |
"NPTf error: Attempting an off-diagonal Box scaling of more than 10 percent.\n" |
227 |
> |
"NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n" |
228 |
|
" Check your tauBarostat, as it is probably too small!\n\n" |
229 |
|
" scaleMat = [%lf\t%lf\t%lf]\n" |
230 |
|
" [%lf\t%lf\t%lf]\n" |
231 |
+ |
" [%lf\t%lf\t%lf]\n" |
232 |
+ |
" eta = [%lf\t%lf\t%lf]\n" |
233 |
+ |
" [%lf\t%lf\t%lf]\n" |
234 |
|
" [%lf\t%lf\t%lf]\n", |
235 |
|
scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
236 |
|
scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
237 |
< |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
237 |
> |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2], |
238 |
> |
eta[0][0],eta[0][1],eta[0][2], |
239 |
> |
eta[1][0],eta[1][1],eta[1][2], |
240 |
> |
eta[2][0],eta[2][1],eta[2][2]); |
241 |
|
painCave.isFatal = 1; |
242 |
|
simError(); |
243 |
|
} else { |
244 |
|
info->getBoxM(hm); |
245 |
< |
info->matMul3(hm, scaleMat, hmnew); |
245 |
> |
matMul3(hm, scaleMat, hmnew); |
246 |
|
info->setBoxM(hmnew); |
247 |
|
} |
256 |
– |
|
248 |
|
} |
249 |
|
|
250 |
< |
template<typename T> void NPTf<T>::moveB( void ){ |
250 |
> |
template<typename T> bool NPTf<T>::etaConverged() { |
251 |
> |
int i; |
252 |
> |
double diffEta, sumEta; |
253 |
|
|
254 |
< |
//new version of NPTf |
262 |
< |
int i, j, k; |
263 |
< |
DirectionalAtom* dAtom; |
264 |
< |
double Tb[3], ji[3]; |
265 |
< |
double vel[3], myVel[3], frc[3]; |
266 |
< |
double mass; |
267 |
< |
|
268 |
< |
double instaTemp, instaPress, instaVol; |
269 |
< |
double tt2, tb2; |
270 |
< |
double sc[3]; |
271 |
< |
double press[3][3], vScale[3][3]; |
272 |
< |
double oldChi, prevChi; |
273 |
< |
double oldEta[3][3], prevEta[3][3], diffEta; |
274 |
< |
|
275 |
< |
tt2 = tauThermostat * tauThermostat; |
276 |
< |
tb2 = tauBarostat * tauBarostat; |
277 |
< |
|
278 |
< |
// Set things up for the iteration: |
279 |
< |
|
280 |
< |
oldChi = chi; |
281 |
< |
|
254 |
> |
sumEta = 0; |
255 |
|
for(i = 0; i < 3; i++) |
256 |
< |
for(j = 0; j < 3; j++) |
284 |
< |
oldEta[i][j] = eta[i][j]; |
256 |
> |
sumEta += pow(prevEta[i][i] - eta[i][i], 2); |
257 |
|
|
258 |
< |
for( i=0; i<nAtoms; i++ ){ |
258 |
> |
diffEta = sqrt( sumEta / 3.0 ); |
259 |
|
|
260 |
< |
atoms[i]->getVel( vel ); |
289 |
< |
|
290 |
< |
for (j=0; j < 3; j++) |
291 |
< |
oldVel[3*i + j] = vel[j]; |
292 |
< |
|
293 |
< |
if( atoms[i]->isDirectional() ){ |
294 |
< |
|
295 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
296 |
< |
|
297 |
< |
dAtom->getJ( ji ); |
298 |
< |
|
299 |
< |
for (j=0; j < 3; j++) |
300 |
< |
oldJi[3*i + j] = ji[j]; |
301 |
< |
|
302 |
< |
} |
303 |
< |
} |
304 |
< |
|
305 |
< |
// do the iteration: |
306 |
< |
|
307 |
< |
instaVol = tStats->getVolume(); |
308 |
< |
|
309 |
< |
for (k=0; k < 4; k++) { |
310 |
< |
|
311 |
< |
instaTemp = tStats->getTemperature(); |
312 |
< |
tStats->getPressureTensor(press); |
313 |
< |
|
314 |
< |
// evolve chi another half step using the temperature at t + dt/2 |
315 |
< |
|
316 |
< |
prevChi = chi; |
317 |
< |
chi = oldChi + dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
318 |
< |
|
319 |
< |
for(i = 0; i < 3; i++) |
320 |
< |
for(j = 0; j < 3; j++) |
321 |
< |
prevEta[i][j] = eta[i][j]; |
322 |
< |
|
323 |
< |
//advance eta half step and calculate scale factor for velocity |
324 |
< |
|
325 |
< |
for(i = 0; i < 3; i ++) |
326 |
< |
for(j = 0; j < 3; j++){ |
327 |
< |
if( i == j) { |
328 |
< |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
329 |
< |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
330 |
< |
vScale[i][j] = eta[i][j] + chi; |
331 |
< |
} else { |
332 |
< |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2); |
333 |
< |
vScale[i][j] = eta[i][j]; |
334 |
< |
} |
335 |
< |
} |
336 |
< |
|
337 |
< |
for( i=0; i<nAtoms; i++ ){ |
338 |
< |
|
339 |
< |
atoms[i]->getFrc( frc ); |
340 |
< |
atoms[i]->getVel(vel); |
341 |
< |
|
342 |
< |
mass = atoms[i]->getMass(); |
343 |
< |
|
344 |
< |
for (j = 0; j < 3; j++) |
345 |
< |
myVel[j] = oldVel[3*i + j]; |
346 |
< |
|
347 |
< |
info->matVecMul3( vScale, myVel, sc ); |
348 |
< |
|
349 |
< |
// velocity half step |
350 |
< |
for (j=0; j < 3; j++) { |
351 |
< |
// velocity half step (use chi from previous step here): |
352 |
< |
vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass) * eConvert - sc[j]); |
353 |
< |
} |
354 |
< |
|
355 |
< |
atoms[i]->setVel( vel ); |
356 |
< |
|
357 |
< |
if( atoms[i]->isDirectional() ){ |
358 |
< |
|
359 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
360 |
< |
|
361 |
< |
// get and convert the torque to body frame |
362 |
< |
|
363 |
< |
dAtom->getTrq( Tb ); |
364 |
< |
dAtom->lab2Body( Tb ); |
365 |
< |
|
366 |
< |
for (j=0; j < 3; j++) |
367 |
< |
ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); |
368 |
< |
|
369 |
< |
dAtom->setJ( ji ); |
370 |
< |
} |
371 |
< |
} |
372 |
< |
|
373 |
< |
if (nConstrained) { |
374 |
< |
constrainB(); |
375 |
< |
} |
376 |
< |
|
377 |
< |
diffEta = 0; |
378 |
< |
for(i = 0; i < 3; i++) |
379 |
< |
diffEta += pow(prevEta[i][i] - eta[i][i], 2); |
380 |
< |
|
381 |
< |
if (fabs(prevChi - chi) <= chiTolerance && sqrt(diffEta / 3) <= etaTolerance) |
382 |
< |
break; |
383 |
< |
} |
384 |
< |
|
385 |
< |
//calculate integral of chidt |
386 |
< |
integralOfChidt += dt2*chi; |
387 |
< |
|
260 |
> |
return ( diffEta <= etaTolerance ); |
261 |
|
} |
262 |
|
|
390 |
– |
template<typename T> void NPTf<T>::resetIntegrator() { |
391 |
– |
int i,j; |
392 |
– |
|
393 |
– |
chi = 0.0; |
394 |
– |
|
395 |
– |
for(i = 0; i < 3; i++) |
396 |
– |
for (j = 0; j < 3; j++) |
397 |
– |
eta[i][j] = 0.0; |
398 |
– |
|
399 |
– |
} |
400 |
– |
|
401 |
– |
template<typename T> int NPTf<T>::readyCheck() { |
402 |
– |
|
403 |
– |
//check parent's readyCheck() first |
404 |
– |
if (T::readyCheck() == -1) |
405 |
– |
return -1; |
406 |
– |
|
407 |
– |
// First check to see if we have a target temperature. |
408 |
– |
// Not having one is fatal. |
409 |
– |
|
410 |
– |
if (!have_target_temp) { |
411 |
– |
sprintf( painCave.errMsg, |
412 |
– |
"NPTf error: You can't use the NPTf integrator\n" |
413 |
– |
" without a targetTemp!\n" |
414 |
– |
); |
415 |
– |
painCave.isFatal = 1; |
416 |
– |
simError(); |
417 |
– |
return -1; |
418 |
– |
} |
419 |
– |
|
420 |
– |
if (!have_target_pressure) { |
421 |
– |
sprintf( painCave.errMsg, |
422 |
– |
"NPTf error: You can't use the NPTf integrator\n" |
423 |
– |
" without a targetPressure!\n" |
424 |
– |
); |
425 |
– |
painCave.isFatal = 1; |
426 |
– |
simError(); |
427 |
– |
return -1; |
428 |
– |
} |
429 |
– |
|
430 |
– |
// We must set tauThermostat. |
431 |
– |
|
432 |
– |
if (!have_tau_thermostat) { |
433 |
– |
sprintf( painCave.errMsg, |
434 |
– |
"NPTf error: If you use the NPTf\n" |
435 |
– |
" integrator, you must set tauThermostat.\n"); |
436 |
– |
painCave.isFatal = 1; |
437 |
– |
simError(); |
438 |
– |
return -1; |
439 |
– |
} |
440 |
– |
|
441 |
– |
// We must set tauBarostat. |
442 |
– |
|
443 |
– |
if (!have_tau_barostat) { |
444 |
– |
sprintf( painCave.errMsg, |
445 |
– |
"NPTf error: If you use the NPTf\n" |
446 |
– |
" integrator, you must set tauBarostat.\n"); |
447 |
– |
painCave.isFatal = 1; |
448 |
– |
simError(); |
449 |
– |
return -1; |
450 |
– |
} |
451 |
– |
|
452 |
– |
|
453 |
– |
// We need NkBT a lot, so just set it here: This is the RAW number |
454 |
– |
// of particles, so no subtraction or addition of constraints or |
455 |
– |
// orientational degrees of freedom: |
456 |
– |
|
457 |
– |
NkBT = (double)Nparticles * kB * targetTemp; |
458 |
– |
|
459 |
– |
// fkBT is used because the thermostat operates on more degrees of freedom |
460 |
– |
// than the barostat (when there are particles with orientational degrees |
461 |
– |
// of freedom). ndf = 3 * (n_atoms + n_oriented -1) - n_constraint - nZcons |
462 |
– |
|
463 |
– |
fkBT = (double)info->ndf * kB * targetTemp; |
464 |
– |
|
465 |
– |
return 1; |
466 |
– |
} |
467 |
– |
|
263 |
|
template<typename T> double NPTf<T>::getConservedQuantity(void){ |
264 |
|
|
265 |
|
double conservedQuantity; |
266 |
< |
double Energy; |
266 |
> |
double totalEnergy; |
267 |
|
double thermostat_kinetic; |
268 |
|
double thermostat_potential; |
269 |
|
double barostat_kinetic; |
271 |
|
double trEta; |
272 |
|
double a[3][3], b[3][3]; |
273 |
|
|
274 |
< |
Energy = tStats->getTotalE(); |
274 |
> |
totalEnergy = tStats->getTotalE(); |
275 |
|
|
276 |
< |
thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi / |
276 |
> |
thermostat_kinetic = fkBT * tt2 * chi * chi / |
277 |
|
(2.0 * eConvert); |
278 |
|
|
279 |
|
thermostat_potential = fkBT* integralOfChidt / eConvert; |
280 |
|
|
281 |
< |
info->transposeMat3(eta, a); |
282 |
< |
info->matMul3(a, eta, b); |
283 |
< |
trEta = info->matTrace3(b); |
281 |
> |
transposeMat3(eta, a); |
282 |
> |
matMul3(a, eta, b); |
283 |
> |
trEta = matTrace3(b); |
284 |
|
|
285 |
< |
barostat_kinetic = NkBT * tauBarostat * tauBarostat * trEta / |
285 |
> |
barostat_kinetic = NkBT * tb2 * trEta / |
286 |
|
(2.0 * eConvert); |
287 |
< |
|
288 |
< |
barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / |
287 |
> |
|
288 |
> |
barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / |
289 |
|
eConvert; |
290 |
|
|
291 |
< |
conservedQuantity = Energy + thermostat_kinetic + thermostat_potential + |
291 |
> |
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
292 |
|
barostat_kinetic + barostat_potential; |
498 |
– |
|
499 |
– |
cout.width(8); |
500 |
– |
cout.precision(8); |
293 |
|
|
294 |
< |
cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << |
503 |
< |
"\t" << thermostat_potential << "\t" << barostat_kinetic << |
504 |
< |
"\t" << barostat_potential << "\t" << conservedQuantity << endl; |
294 |
> |
return conservedQuantity; |
295 |
|
|
506 |
– |
return conservedQuantity; |
296 |
|
} |
297 |
+ |
|
298 |
+ |
template<typename T> string NPTf<T>::getAdditionalParameters(void){ |
299 |
+ |
string parameters; |
300 |
+ |
const int BUFFERSIZE = 2000; // size of the read buffer |
301 |
+ |
char buffer[BUFFERSIZE]; |
302 |
+ |
|
303 |
+ |
sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt); |
304 |
+ |
parameters += buffer; |
305 |
+ |
|
306 |
+ |
for(int i = 0; i < 3; i++){ |
307 |
+ |
sprintf(buffer,"\t%G\t%G\t%G;", eta[i][0], eta[i][1], eta[i][2]); |
308 |
+ |
parameters += buffer; |
309 |
+ |
} |
310 |
+ |
|
311 |
+ |
return parameters; |
312 |
+ |
|
313 |
+ |
} |