ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/NPTf.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/NPTf.cpp (file contents):
Revision 767 by tim, Tue Sep 16 20:02:11 2003 UTC vs.
Revision 1253 by gezelter, Tue Jun 8 16:49:46 2004 UTC

# Line 1 | Line 1
1 < #include <cmath>
1 > #include <math.h>
2 >
3 > #include "MatVec3.h"
4   #include "Atom.hpp"
5   #include "SRI.hpp"
6   #include "AbstractClasses.hpp"
# Line 7 | Line 9
9   #include "Thermo.hpp"
10   #include "ReadWrite.hpp"
11   #include "Integrator.hpp"
12 < #include "simError.h"
12 > #include "simError.h"
13  
14 + #ifdef IS_MPI
15 + #include "mpiSimulation.hpp"
16 + #endif
17  
18   // Basic non-isotropic thermostating and barostating via the Melchionna
19   // modification of the Hoover algorithm:
20   //
21   //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
22 < //       Molec. Phys., 78, 533.
22 > //       Molec. Phys., 78, 533.
23   //
24   //           and
25 < //
25 > //
26   //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
27  
28   template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff):
29    T( theInfo, the_ff )
30   {
31 <  int i, j;
32 <  chi = 0.0;
33 <  integralOfChidt = 0.0;
31 >  GenericData* data;
32 >  DoubleArrayData * etaValue;
33 >  vector<double> etaArray;
34 >  int i,j;
35  
36 <  for(i = 0; i < 3; i++)
37 <    for (j = 0; j < 3; j++)
36 >  for(i = 0; i < 3; i++){
37 >    for (j = 0; j < 3; j++){
38 >
39        eta[i][j] = 0.0;
40 +      oldEta[i][j] = 0.0;
41 +    }
42 +  }
43  
34  have_tau_thermostat = 0;
35  have_tau_barostat = 0;
36  have_target_temp = 0;
37  have_target_pressure = 0;
44  
45 <  have_chi_tolerance = 0;
46 <  have_eta_tolerance = 0;
47 <  have_pos_iter_tolerance = 0;
45 >  if( theInfo->useInitXSstate ){
46 >    // retrieve eta array from simInfo if it exists
47 >    data = info->getProperty(ETAVALUE_ID);
48 >    if(data){
49 >      etaValue = dynamic_cast<DoubleArrayData*>(data);
50 >      
51 >      if(etaValue){
52 >        etaArray = etaValue->getData();
53 >        
54 >        for(i = 0; i < 3; i++){
55 >          for (j = 0; j < 3; j++){
56 >            eta[i][j] = etaArray[3*i+j];
57 >            oldEta[i][j] = eta[i][j];
58 >          }
59 >        }
60 >      }
61 >    }
62 >  }
63  
43  oldPos = new double[3*nAtoms];
44  oldVel = new double[3*nAtoms];
45  oldJi = new double[3*nAtoms];
46 #ifdef IS_MPI
47  Nparticles = mpiSim->getTotAtoms();
48 #else
49  Nparticles = theInfo->n_atoms;
50 #endif
64   }
65  
66   template<typename T> NPTf<T>::~NPTf() {
67 <  delete[] oldPos;
68 <  delete[] oldVel;
56 <  delete[] oldJi;
67 >
68 >  // empty for now
69   }
70  
71 < template<typename T> void NPTf<T>::moveA() {
60 <  
61 <  int i, j, k;
62 <  DirectionalAtom* dAtom;
63 <  double Tb[3], ji[3];
64 <  double A[3][3], I[3][3];
65 <  double angle, mass;
66 <  double vel[3], pos[3], frc[3];
71 > template<typename T> void NPTf<T>::resetIntegrator() {
72  
73 <  double rj[3];
69 <  double instaTemp, instaPress, instaVol;
70 <  double tt2, tb2;
71 <  double sc[3];
72 <  double eta2ij;
73 <  double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3];
74 <  double bigScale, smallScale, offDiagMax;
75 <  double COM[3];
73 >  int i, j;
74  
75 <  tt2 = tauThermostat * tauThermostat;
76 <  tb2 = tauBarostat * tauBarostat;
75 >  for(i = 0; i < 3; i++)
76 >    for (j = 0; j < 3; j++)
77 >      eta[i][j] = 0.0;
78  
79 <  instaTemp = tStats->getTemperature();
80 <  tStats->getPressureTensor(press);
82 <  instaVol = tStats->getVolume();
83 <  
84 <  tStats->getCOM(COM);
79 >  T::resetIntegrator();
80 > }
81  
82 <  //calculate scale factor of veloity
83 <  for (i = 0; i < 3; i++ ) {
84 <    for (j = 0; j < 3; j++ ) {
85 <      vScale[i][j] = eta[i][j];
86 <      
87 <      if (i == j) {
88 <        vScale[i][j] += chi;          
89 <      }              
82 > template<typename T> void NPTf<T>::evolveEtaA() {
83 >
84 >  int i, j;
85 >
86 >  for(i = 0; i < 3; i ++){
87 >    for(j = 0; j < 3; j++){
88 >      if( i == j)
89 >        eta[i][j] += dt2 *  instaVol *
90 >          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
91 >      else
92 >        eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2);
93      }
94    }
95    
96 <  //evolve velocity half step
97 <  for( i=0; i<nAtoms; i++ ){
96 >  for(i = 0; i < 3; i++)
97 >    for (j = 0; j < 3; j++)
98 >      oldEta[i][j] = eta[i][j];
99 > }
100  
101 <    atoms[i]->getVel( vel );
101 <    atoms[i]->getFrc( frc );
101 > template<typename T> void NPTf<T>::evolveEtaB() {
102  
103 <    mass = atoms[i]->getMass();
104 <    
105 <    info->matVecMul3( vScale, vel, sc );
103 >  int i,j;
104  
105 <    for (j=0; j < 3; j++) {
106 <      // velocity half step  (use chi from previous step here):
107 <      vel[j] += dt2 * ((frc[j]  / mass) * eConvert - sc[j]);
108 <  
105 >  for(i = 0; i < 3; i++)
106 >    for (j = 0; j < 3; j++)
107 >      prevEta[i][j] = eta[i][j];
108 >
109 >  for(i = 0; i < 3; i ++){
110 >    for(j = 0; j < 3; j++){
111 >      if( i == j) {
112 >        eta[i][j] = oldEta[i][j] + dt2 *  instaVol *
113 >          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
114 >      } else {
115 >        eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2);
116 >      }
117      }
118 +  }
119 + }
120  
121 <    atoms[i]->setVel( vel );
122 <  
115 <    if( atoms[i]->isDirectional() ){
121 > template<typename T> void NPTf<T>::calcVelScale(void){
122 >  int i,j;
123  
124 <      dAtom = (DirectionalAtom *)atoms[i];
124 >  for (i = 0; i < 3; i++ ) {
125 >    for (j = 0; j < 3; j++ ) {
126 >      vScale[i][j] = eta[i][j];
127  
128 <      // get and convert the torque to body frame
129 <      
130 <      dAtom->getTrq( Tb );
131 <      dAtom->lab2Body( Tb );
123 <      
124 <      // get the angular momentum, and propagate a half step
125 <
126 <      dAtom->getJ( ji );
127 <
128 <      for (j=0; j < 3; j++)
129 <        ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
130 <      
131 <      // use the angular velocities to propagate the rotation matrix a
132 <      // full time step
133 <
134 <      dAtom->getA(A);
135 <      dAtom->getI(I);
136 <    
137 <      // rotate about the x-axis      
138 <      angle = dt2 * ji[0] / I[0][0];
139 <      this->rotate( 1, 2, angle, ji, A );
140 <
141 <      // rotate about the y-axis
142 <      angle = dt2 * ji[1] / I[1][1];
143 <      this->rotate( 2, 0, angle, ji, A );
144 <      
145 <      // rotate about the z-axis
146 <      angle = dt * ji[2] / I[2][2];
147 <      this->rotate( 0, 1, angle, ji, A);
148 <      
149 <      // rotate about the y-axis
150 <      angle = dt2 * ji[1] / I[1][1];
151 <      this->rotate( 2, 0, angle, ji, A );
152 <      
153 <       // rotate about the x-axis
154 <      angle = dt2 * ji[0] / I[0][0];
155 <      this->rotate( 1, 2, angle, ji, A );
156 <      
157 <      dAtom->setJ( ji );
158 <      dAtom->setA( A  );    
159 <    }    
128 >      if (i == j) {
129 >        vScale[i][j] += chi;
130 >      }
131 >    }
132    }
133 + }
134  
135 <  // advance chi half step
136 <  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
135 > template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) {
136 >
137 >  matVecMul3( vScale, vel, sc );
138 > }
139  
140 <  //calculate the integral of chidt
141 <  integralOfChidt += dt2*chi;
140 > template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){
141 >  int j;
142 >  double myVel[3];
143  
144 <  //advance eta half step
145 <  for(i = 0; i < 3; i ++)
170 <    for(j = 0; j < 3; j++){
171 <      if( i == j)
172 <        eta[i][j] += dt2 *  instaVol *
173 <          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
174 <      else
175 <        eta[i][j] += dt2 * instaVol * press[i][j] / ( NkBT*tb2);
176 <    }
177 <    
178 <  //save the old positions
179 <  for(i = 0; i < nAtoms; i++){
180 <    atoms[i]->getPos(pos);
181 <    for(j = 0; j < 3; j++)
182 <      oldPos[i*3 + j] = pos[j];
183 <  }
144 >  for (j = 0; j < 3; j++)
145 >    myVel[j] = oldVel[3*index + j];
146    
147 <  //the first estimation of r(t+dt) is equal to  r(t)
148 <    
187 <  for(k = 0; k < 4; k ++){
147 >  matVecMul3( vScale, myVel, sc );
148 > }
149  
150 <    for(i =0 ; i < nAtoms; i++){
150 > template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3],
151 >                                               int index, double sc[3]){
152 >  int j;
153 >  double rj[3];
154  
155 <      atoms[i]->getVel(vel);
156 <      atoms[i]->getPos(pos);
155 >  for(j=0; j<3; j++)
156 >    rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j];
157  
158 <      for(j = 0; j < 3; j++)
159 <        rj[j] = (oldPos[i*3 + j] + pos[j])/2 - COM[j];
196 <      
197 <      info->matVecMul3( eta, rj, sc );
198 <      
199 <      for(j = 0; j < 3; j++)
200 <        pos[j] = oldPos[i*3 + j] + dt*(vel[j] + sc[j]);
158 >  matVecMul3( eta, rj, sc );
159 > }
160  
161 <      atoms[i]->setPos( pos );
161 > template<typename T> void NPTf<T>::scaleSimBox( void ){
162  
163 <    }
163 >  int i,j,k;
164 >  double scaleMat[3][3];
165 >  double eta2ij;
166 >  double bigScale, smallScale, offDiagMax;
167 >  double hm[3][3], hmnew[3][3];
168  
206  }  
169  
170 <
170 >
171    // Scale the box after all the positions have been moved:
172 <  
172 >
173    // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat)
174    //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2)
175 <  
175 >
176    bigScale = 1.0;
177    smallScale = 1.0;
178    offDiagMax = 0.0;
179 <  
179 >
180    for(i=0; i<3; i++){
181      for(j=0; j<3; j++){
182 <      
182 >
183        // Calculate the matrix Product of the eta array (we only need
184        // the ij element right now):
185 <      
185 >
186        eta2ij = 0.0;
187        for(k=0; k<3; k++){
188          eta2ij += eta[i][k] * eta[k][j];
189        }
190 <      
190 >
191        scaleMat[i][j] = 0.0;
192        // identity matrix (see above):
193        if (i == j) scaleMat[i][j] = 1.0;
194        // Taylor expansion for the exponential truncated at second order:
195        scaleMat[i][j] += dt*eta[i][j]  + 0.5*dt*dt*eta2ij;
196 +      
197  
198        if (i != j)
199 <        if (fabs(scaleMat[i][j]) > offDiagMax)
199 >        if (fabs(scaleMat[i][j]) > offDiagMax)
200            offDiagMax = fabs(scaleMat[i][j]);
201      }
202  
203      if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i];
204      if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i];
205    }
206 <  
207 <  if ((bigScale > 1.1) || (smallScale < 0.9)) {
206 >
207 >  if ((bigScale > 1.01) || (smallScale < 0.99)) {
208      sprintf( painCave.errMsg,
209 <             "NPTf error: Attempting a Box scaling of more than 10 percent.\n"
209 >             "NPTf error: Attempting a Box scaling of more than 1 percent.\n"
210               " Check your tauBarostat, as it is probably too small!\n\n"
211               " scaleMat = [%lf\t%lf\t%lf]\n"
212               "            [%lf\t%lf\t%lf]\n"
213 +             "            [%lf\t%lf\t%lf]\n"
214 +             "      eta = [%lf\t%lf\t%lf]\n"
215 +             "            [%lf\t%lf\t%lf]\n"
216               "            [%lf\t%lf\t%lf]\n",
217               scaleMat[0][0],scaleMat[0][1],scaleMat[0][2],
218               scaleMat[1][0],scaleMat[1][1],scaleMat[1][2],
219 <             scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]);
219 >             scaleMat[2][0],scaleMat[2][1],scaleMat[2][2],
220 >             eta[0][0],eta[0][1],eta[0][2],
221 >             eta[1][0],eta[1][1],eta[1][2],
222 >             eta[2][0],eta[2][1],eta[2][2]);
223      painCave.isFatal = 1;
224      simError();
225 <  } else if (offDiagMax > 0.1) {
225 >  } else if (offDiagMax > 0.01) {
226      sprintf( painCave.errMsg,
227 <             "NPTf error: Attempting an off-diagonal Box scaling of more than 10 percent.\n"
227 >             "NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n"
228               " Check your tauBarostat, as it is probably too small!\n\n"
229               " scaleMat = [%lf\t%lf\t%lf]\n"
230               "            [%lf\t%lf\t%lf]\n"
231 +             "            [%lf\t%lf\t%lf]\n"
232 +             "      eta = [%lf\t%lf\t%lf]\n"
233 +             "            [%lf\t%lf\t%lf]\n"
234               "            [%lf\t%lf\t%lf]\n",
235               scaleMat[0][0],scaleMat[0][1],scaleMat[0][2],
236               scaleMat[1][0],scaleMat[1][1],scaleMat[1][2],
237 <             scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]);
237 >             scaleMat[2][0],scaleMat[2][1],scaleMat[2][2],
238 >             eta[0][0],eta[0][1],eta[0][2],
239 >             eta[1][0],eta[1][1],eta[1][2],
240 >             eta[2][0],eta[2][1],eta[2][2]);
241      painCave.isFatal = 1;
242      simError();
243    } else {
244      info->getBoxM(hm);
245 <    info->matMul3(hm, scaleMat, hmnew);
245 >    matMul3(hm, scaleMat, hmnew);
246      info->setBoxM(hmnew);
247    }
273  
248   }
249  
250 < template<typename T> void NPTf<T>::moveB( void ){
250 > template<typename T> bool NPTf<T>::etaConverged() {
251 >  int i;
252 >  double diffEta, sumEta;
253  
254 <  int i, j, k;
279 <  DirectionalAtom* dAtom;
280 <  double Tb[3], ji[3];
281 <  double vel[3], frc[3];
282 <  double mass;
283 <
284 <  double instaTemp, instaPress, instaVol;
285 <  double tt2, tb2;
286 <  double sc[3];
287 <  double press[3][3], vScale[3][3];
288 <  double oldChi, prevChi;
289 <  double oldEta[3][3], preEta[3][3], diffEta;
290 <  
291 <  tt2 = tauThermostat * tauThermostat;
292 <  tb2 = tauBarostat * tauBarostat;
293 <
294 <
295 <  // Set things up for the iteration:
296 <
297 <  oldChi = chi;
298 <  
254 >  sumEta = 0;
255    for(i = 0; i < 3; i++)
256 <    for(j = 0; j < 3; j++)
301 <      oldEta[i][j] = eta[i][j];
256 >    sumEta += pow(prevEta[i][i] - eta[i][i], 2);
257  
258 <  for( i=0; i<nAtoms; i++ ){
258 >  diffEta = sqrt( sumEta / 3.0 );
259  
260 <    atoms[i]->getVel( vel );
260 >  return ( diffEta <= etaTolerance );
261 > }
262  
263 <    for (j=0; j < 3; j++)
308 <      oldVel[3*i + j]  = vel[j];
263 > template<typename T> double NPTf<T>::getConservedQuantity(void){
264  
265 <    if( atoms[i]->isDirectional() ){
265 >  double conservedQuantity;
266 >  double totalEnergy;
267 >  double thermostat_kinetic;
268 >  double thermostat_potential;
269 >  double barostat_kinetic;
270 >  double barostat_potential;
271 >  double trEta;
272 >  double a[3][3], b[3][3];
273  
274 <      dAtom = (DirectionalAtom *)atoms[i];
274 >  totalEnergy = tStats->getTotalE();
275  
276 <      dAtom->getJ( ji );
276 >  thermostat_kinetic = fkBT * tt2 * chi * chi /
277 >    (2.0 * eConvert);
278  
279 <      for (j=0; j < 3; j++)
317 <        oldJi[3*i + j] = ji[j];
279 >  thermostat_potential = fkBT* integralOfChidt / eConvert;
280  
281 <    }
282 <  }
281 >  transposeMat3(eta, a);
282 >  matMul3(a, eta, b);
283 >  trEta = matTrace3(b);
284  
285 <  // do the iteration:
285 >  barostat_kinetic = NkBT * tb2 * trEta /
286 >    (2.0 * eConvert);
287  
288 <  instaVol = tStats->getVolume();
289 <  
326 <  for (k=0; k < 4; k++) {
327 <    
328 <    instaTemp = tStats->getTemperature();
329 <    tStats->getPressureTensor(press);
288 >  barostat_potential = (targetPressure * tStats->getVolume() / p_convert) /
289 >    eConvert;
290  
291 <    // evolve chi another half step using the temperature at t + dt/2
291 >  conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential +
292 >    barostat_kinetic + barostat_potential;
293  
294 <    prevChi = chi;
334 <    chi = oldChi + dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
335 <    
336 <    for(i = 0; i < 3; i++)
337 <      for(j = 0; j < 3; j++)
338 <        preEta[i][j] = eta[i][j];
294 >  return conservedQuantity;
295  
340    //advance eta half step and calculate scale factor for velocity
341    for(i = 0; i < 3; i ++)
342      for(j = 0; j < 3; j++){
343        if( i == j){
344          eta[i][j] = oldEta[i][j] + dt2 *  instaVol *
345            (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
346          vScale[i][j] = eta[i][j] + chi;
347        }
348        else
349        {
350          eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2);
351          vScale[i][j] = eta[i][j];
352        }
353    }      
354
355    //advance velocity half step
356    for( i=0; i<nAtoms; i++ ){
357
358      atoms[i]->getFrc( frc );
359      atoms[i]->getVel(vel);
360      
361      mass = atoms[i]->getMass();
362      
363      info->matVecMul3( vScale, vel, sc );
364
365      for (j=0; j < 3; j++) {
366        // velocity half step  (use chi from previous step here):
367        vel[j] = oldVel[3*i+j] + dt2 * ((frc[j]  / mass) * eConvert - sc[j]);
368      }
369      
370      atoms[i]->setVel( vel );
371      
372      if( atoms[i]->isDirectional() ){
373
374        dAtom = (DirectionalAtom *)atoms[i];
375  
376        // get and convert the torque to body frame      
377  
378        dAtom->getTrq( Tb );
379        dAtom->lab2Body( Tb );      
380            
381        for (j=0; j < 3; j++)
382          ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi);
383      
384          dAtom->setJ( ji );
385      }
386    }
387
388    
389    diffEta = 0;
390    for(i = 0; i < 3; i++)
391      diffEta += pow(preEta[i][i] - eta[i][i], 2);    
392    
393    if (fabs(prevChi - chi) <= chiTolerance && sqrt(diffEta / 3) <= etaTolerance)
394      break;
395  }
396
397  //calculate integral of chida
398  integralOfChidt += dt2*chi;
399
400  
296   }
297  
298 < template<typename T> void NPTf<T>::resetIntegrator() {
299 <  int i,j;
300 <  
301 <  chi = 0.0;
298 > template<typename T> string NPTf<T>::getAdditionalParameters(void){
299 >  string parameters;
300 >  const int BUFFERSIZE = 2000; // size of the read buffer
301 >  char buffer[BUFFERSIZE];
302  
303 <  for(i = 0; i < 3; i++)
304 <    for (j = 0; j < 3; j++)
410 <      eta[i][j] = 0.0;
303 >  sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt);
304 >  parameters += buffer;
305  
306 < }
307 <
308 < template<typename T> int NPTf<T>::readyCheck() {
415 <
416 <  //check parent's readyCheck() first
417 <  if (T::readyCheck() == -1)
418 <    return -1;
419 <
420 <  // First check to see if we have a target temperature.
421 <  // Not having one is fatal.
422 <  
423 <  if (!have_target_temp) {
424 <    sprintf( painCave.errMsg,
425 <             "NPTf error: You can't use the NPTf integrator\n"
426 <             "   without a targetTemp!\n"
427 <             );
428 <    painCave.isFatal = 1;
429 <    simError();
430 <    return -1;
306 >  for(int i = 0; i < 3; i++){
307 >    sprintf(buffer,"\t%G\t%G\t%G;", eta[i][0], eta[i][1], eta[i][2]);
308 >    parameters += buffer;
309    }
310  
311 <  if (!have_target_pressure) {
434 <    sprintf( painCave.errMsg,
435 <             "NPTf error: You can't use the NPTf integrator\n"
436 <             "   without a targetPressure!\n"
437 <             );
438 <    painCave.isFatal = 1;
439 <    simError();
440 <    return -1;
441 <  }
442 <  
443 <  // We must set tauThermostat.
444 <  
445 <  if (!have_tau_thermostat) {
446 <    sprintf( painCave.errMsg,
447 <             "NPTf error: If you use the NPTf\n"
448 <             "   integrator, you must set tauThermostat.\n");
449 <    painCave.isFatal = 1;
450 <    simError();
451 <    return -1;
452 <  }    
311 >  return parameters;
312  
454  // We must set tauBarostat.
455  
456  if (!have_tau_barostat) {
457    sprintf( painCave.errMsg,
458             "NPTf error: If you use the NPTf\n"
459             "   integrator, you must set tauBarostat.\n");
460    painCave.isFatal = 1;
461    simError();
462    return -1;
463  }    
464
465  // We need NkBT a lot, so just set it here:
466
467  NkBT = (double)Nparticles * kB * targetTemp;
468  fkBT = (double)info->ndf * kB * targetTemp;
469
470  return 1;
313   }
472
473 template<typename T> double NPTf<T>::getConservedQuantity(void){
474
475  double conservedQuantity;
476  double tb2;
477  double trEta;  
478  double U;
479  double thermo;
480  double integral;
481  double baro;
482  double PV;
483
484  U = tStats->getTotalE();
485  thermo = (fkBT * tauThermostat * tauThermostat * chi * chi / 2.0) / eConvert;
486
487  tb2 = tauBarostat * tauBarostat;
488  trEta = info->matTrace3(eta);
489  baro = ((double)info->ndfTrans * kB * targetTemp * tb2 * trEta * trEta / 2.0) / eConvert;
490
491  integral = ((double)(info->ndf + 1) * kB * targetTemp * integralOfChidt) /eConvert;
492
493  PV = (targetPressure * tStats->getVolume() / p_convert) / eConvert;
494
495
496  cout.width(8);
497  cout.precision(8);
498  
499  cout << info->getTime() << "\t"
500       << chi << "\t"
501       << trEta << "\t"
502       << U << "\t"
503       << thermo << "\t"
504       << baro << "\t"
505       << integral << "\t"
506       << PV << "\t"
507       << U+thermo+integral+PV+baro << endl;
508
509  conservedQuantity = U+thermo+integral+PV+baro;
510  return conservedQuantity;
511  
512 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines