ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/NPTf.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/NPTf.cpp (file contents):
Revision 600 by gezelter, Mon Jul 14 22:38:13 2003 UTC vs.
Revision 1253 by gezelter, Tue Jun 8 16:49:46 2004 UTC

# Line 1 | Line 1
1 + #include <math.h>
2 +
3 + #include "MatVec3.h"
4   #include "Atom.hpp"
5   #include "SRI.hpp"
6   #include "AbstractClasses.hpp"
# Line 6 | Line 9
9   #include "Thermo.hpp"
10   #include "ReadWrite.hpp"
11   #include "Integrator.hpp"
12 < #include "simError.h"
12 > #include "simError.h"
13  
14 + #ifdef IS_MPI
15 + #include "mpiSimulation.hpp"
16 + #endif
17  
18   // Basic non-isotropic thermostating and barostating via the Melchionna
19   // modification of the Hoover algorithm:
20   //
21   //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
22 < //       Molec. Phys., 78, 533.
22 > //       Molec. Phys., 78, 533.
23   //
24   //           and
25 < //
25 > //
26   //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
27  
28 < NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff):
29 <  Integrator( theInfo, the_ff )
28 > template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff):
29 >  T( theInfo, the_ff )
30   {
31 +  GenericData* data;
32 +  DoubleArrayData * etaValue;
33 +  vector<double> etaArray;
34 +  int i,j;
35 +
36 +  for(i = 0; i < 3; i++){
37 +    for (j = 0; j < 3; j++){
38 +
39 +      eta[i][j] = 0.0;
40 +      oldEta[i][j] = 0.0;
41 +    }
42 +  }
43 +
44 +
45 +  if( theInfo->useInitXSstate ){
46 +    // retrieve eta array from simInfo if it exists
47 +    data = info->getProperty(ETAVALUE_ID);
48 +    if(data){
49 +      etaValue = dynamic_cast<DoubleArrayData*>(data);
50 +      
51 +      if(etaValue){
52 +        etaArray = etaValue->getData();
53 +        
54 +        for(i = 0; i < 3; i++){
55 +          for (j = 0; j < 3; j++){
56 +            eta[i][j] = etaArray[3*i+j];
57 +            oldEta[i][j] = eta[i][j];
58 +          }
59 +        }
60 +      }
61 +    }
62 +  }
63 +
64 + }
65 +
66 + template<typename T> NPTf<T>::~NPTf() {
67 +
68 +  // empty for now
69 + }
70 +
71 + template<typename T> void NPTf<T>::resetIntegrator() {
72 +
73    int i, j;
26  chi = 0.0;
74  
75 <  for(i = 0; i < 3; i++)
76 <    for (j = 0; j < 3; j++)
75 >  for(i = 0; i < 3; i++)
76 >    for (j = 0; j < 3; j++)
77        eta[i][j] = 0.0;
78  
79 <  have_tau_thermostat = 0;
33 <  have_tau_barostat = 0;
34 <  have_target_temp = 0;
35 <  have_target_pressure = 0;
79 >  T::resetIntegrator();
80   }
81  
82 < void NPTf::moveA() {
82 > template<typename T> void NPTf<T>::evolveEtaA() {
83 >
84 >  int i, j;
85 >
86 >  for(i = 0; i < 3; i ++){
87 >    for(j = 0; j < 3; j++){
88 >      if( i == j)
89 >        eta[i][j] += dt2 *  instaVol *
90 >          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
91 >      else
92 >        eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2);
93 >    }
94 >  }
95    
96 <  int i, j, k;
97 <  DirectionalAtom* dAtom;
98 <  double Tb[3], ji[3];
99 <  double A[3][3], I[3][3];
44 <  double angle, mass;
45 <  double vel[3], pos[3], frc[3];
96 >  for(i = 0; i < 3; i++)
97 >    for (j = 0; j < 3; j++)
98 >      oldEta[i][j] = eta[i][j];
99 > }
100  
101 <  double rj[3];
48 <  double instaTemp, instaPress, instaVol;
49 <  double tt2, tb2;
50 <  double sc[3];
51 <  double eta2ij;
52 <  double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3];
101 > template<typename T> void NPTf<T>::evolveEtaB() {
102  
103 <  tt2 = tauThermostat * tauThermostat;
55 <  tb2 = tauBarostat * tauBarostat;
103 >  int i,j;
104  
105 <  instaTemp = tStats->getTemperature();
106 <  tStats->getPressureTensor(press);
107 <  instaVol = tStats->getVolume();
60 <  
61 <  // first evolve chi a half step
62 <  
63 <  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
105 >  for(i = 0; i < 3; i++)
106 >    for (j = 0; j < 3; j++)
107 >      prevEta[i][j] = eta[i][j];
108  
109 <  for (i = 0; i < 3; i++ ) {
110 <    for (j = 0; j < 3; j++ ) {
111 <      if (i == j) {
112 <        
113 <        eta[i][j] += dt2 * instaVol *
70 <          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
71 <        
72 <        vScale[i][j] = eta[i][j] + chi;
73 <        
109 >  for(i = 0; i < 3; i ++){
110 >    for(j = 0; j < 3; j++){
111 >      if( i == j) {
112 >        eta[i][j] = oldEta[i][j] + dt2 *  instaVol *
113 >          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
114        } else {
115 <        
76 <        eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2);
77 <
78 <        vScale[i][j] = eta[i][j];
79 <        
115 >        eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2);
116        }
117      }
118    }
119 + }
120  
121 <  for( i=0; i<nAtoms; i++ ){
121 > template<typename T> void NPTf<T>::calcVelScale(void){
122 >  int i,j;
123  
124 <    atoms[i]->getVel( vel );
125 <    atoms[i]->getPos( pos );
126 <    atoms[i]->getFrc( frc );
124 >  for (i = 0; i < 3; i++ ) {
125 >    for (j = 0; j < 3; j++ ) {
126 >      vScale[i][j] = eta[i][j];
127  
128 <    mass = atoms[i]->getMass();
129 <    
130 <    // velocity half step
93 <        
94 <    info->matVecMul3( vScale, vel, sc );
95 <    
96 <    for (j = 0; j < 3; j++) {
97 <      vel[j] += dt2 * ((frc[j]  / mass) * eConvert - sc[j]);
98 <      rj[j] = pos[j];
128 >      if (i == j) {
129 >        vScale[i][j] += chi;
130 >      }
131      }
132 +  }
133 + }
134  
135 <    atoms[i]->setVel( vel );
135 > template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) {
136 >
137 >  matVecMul3( vScale, vel, sc );
138 > }
139  
140 <    // position whole step    
140 > template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){
141 >  int j;
142 >  double myVel[3];
143  
144 <    info->wrapVector(rj);
144 >  for (j = 0; j < 3; j++)
145 >    myVel[j] = oldVel[3*index + j];
146 >  
147 >  matVecMul3( vScale, myVel, sc );
148 > }
149  
150 <    info->matVecMul3( eta, rj, sc );
150 > template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3],
151 >                                               int index, double sc[3]){
152 >  int j;
153 >  double rj[3];
154  
155 <    for (j = 0; j < 3; j++ )
156 <      pos[j] += dt * (vel[j] + sc[j]);
111 <  
112 <    if( atoms[i]->isDirectional() ){
155 >  for(j=0; j<3; j++)
156 >    rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j];
157  
158 <      dAtom = (DirectionalAtom *)atoms[i];
159 <          
116 <      // get and convert the torque to body frame
117 <      
118 <      dAtom->getTrq( Tb );
119 <      dAtom->lab2Body( Tb );
120 <      
121 <      // get the angular momentum, and propagate a half step
158 >  matVecMul3( eta, rj, sc );
159 > }
160  
161 <      dAtom->getJ( ji );
161 > template<typename T> void NPTf<T>::scaleSimBox( void ){
162  
163 <      for (j=0; j < 3; j++)
164 <        ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
165 <      
166 <      // use the angular velocities to propagate the rotation matrix a
167 <      // full time step
163 >  int i,j,k;
164 >  double scaleMat[3][3];
165 >  double eta2ij;
166 >  double bigScale, smallScale, offDiagMax;
167 >  double hm[3][3], hmnew[3][3];
168  
131      dAtom->getA(A);
132      dAtom->getI(I);
133    
134      // rotate about the x-axis      
135      angle = dt2 * ji[0] / I[0][0];
136      this->rotate( 1, 2, angle, ji, A );
169  
170 <      // rotate about the y-axis
139 <      angle = dt2 * ji[1] / I[1][1];
140 <      this->rotate( 2, 0, angle, ji, A );
141 <      
142 <      // rotate about the z-axis
143 <      angle = dt * ji[2] / I[2][2];
144 <      this->rotate( 0, 1, angle, ji, A);
145 <      
146 <      // rotate about the y-axis
147 <      angle = dt2 * ji[1] / I[1][1];
148 <      this->rotate( 2, 0, angle, ji, A );
149 <      
150 <       // rotate about the x-axis
151 <      angle = dt2 * ji[0] / I[0][0];
152 <      this->rotate( 1, 2, angle, ji, A );
153 <      
154 <      dAtom->setJ( ji );
155 <      dAtom->setA( A  );    
156 <    }                    
157 <  }
158 <  
170 >
171    // Scale the box after all the positions have been moved:
172 <  
172 >
173    // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat)
174    //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2)
175 <  
176 <  
175 >
176 >  bigScale = 1.0;
177 >  smallScale = 1.0;
178 >  offDiagMax = 0.0;
179 >
180    for(i=0; i<3; i++){
181      for(j=0; j<3; j++){
182 <      
182 >
183        // Calculate the matrix Product of the eta array (we only need
184        // the ij element right now):
185 <      
185 >
186        eta2ij = 0.0;
187        for(k=0; k<3; k++){
188          eta2ij += eta[i][k] * eta[k][j];
189        }
190 <      
190 >
191        scaleMat[i][j] = 0.0;
192        // identity matrix (see above):
193        if (i == j) scaleMat[i][j] = 1.0;
194        // Taylor expansion for the exponential truncated at second order:
195        scaleMat[i][j] += dt*eta[i][j]  + 0.5*dt*dt*eta2ij;
196        
197 +
198 +      if (i != j)
199 +        if (fabs(scaleMat[i][j]) > offDiagMax)
200 +          offDiagMax = fabs(scaleMat[i][j]);
201      }
202 +
203 +    if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i];
204 +    if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i];
205    }
206 <  
207 <  info->getBoxM(hm);
208 <  info->matMul3(hm, scaleMat, hmnew);
209 <  info->setBoxM(hmnew);
210 <  
206 >
207 >  if ((bigScale > 1.01) || (smallScale < 0.99)) {
208 >    sprintf( painCave.errMsg,
209 >             "NPTf error: Attempting a Box scaling of more than 1 percent.\n"
210 >             " Check your tauBarostat, as it is probably too small!\n\n"
211 >             " scaleMat = [%lf\t%lf\t%lf]\n"
212 >             "            [%lf\t%lf\t%lf]\n"
213 >             "            [%lf\t%lf\t%lf]\n"
214 >             "      eta = [%lf\t%lf\t%lf]\n"
215 >             "            [%lf\t%lf\t%lf]\n"
216 >             "            [%lf\t%lf\t%lf]\n",
217 >             scaleMat[0][0],scaleMat[0][1],scaleMat[0][2],
218 >             scaleMat[1][0],scaleMat[1][1],scaleMat[1][2],
219 >             scaleMat[2][0],scaleMat[2][1],scaleMat[2][2],
220 >             eta[0][0],eta[0][1],eta[0][2],
221 >             eta[1][0],eta[1][1],eta[1][2],
222 >             eta[2][0],eta[2][1],eta[2][2]);
223 >    painCave.isFatal = 1;
224 >    simError();
225 >  } else if (offDiagMax > 0.01) {
226 >    sprintf( painCave.errMsg,
227 >             "NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n"
228 >             " Check your tauBarostat, as it is probably too small!\n\n"
229 >             " scaleMat = [%lf\t%lf\t%lf]\n"
230 >             "            [%lf\t%lf\t%lf]\n"
231 >             "            [%lf\t%lf\t%lf]\n"
232 >             "      eta = [%lf\t%lf\t%lf]\n"
233 >             "            [%lf\t%lf\t%lf]\n"
234 >             "            [%lf\t%lf\t%lf]\n",
235 >             scaleMat[0][0],scaleMat[0][1],scaleMat[0][2],
236 >             scaleMat[1][0],scaleMat[1][1],scaleMat[1][2],
237 >             scaleMat[2][0],scaleMat[2][1],scaleMat[2][2],
238 >             eta[0][0],eta[0][1],eta[0][2],
239 >             eta[1][0],eta[1][1],eta[1][2],
240 >             eta[2][0],eta[2][1],eta[2][2]);
241 >    painCave.isFatal = 1;
242 >    simError();
243 >  } else {
244 >    info->getBoxM(hm);
245 >    matMul3(hm, scaleMat, hmnew);
246 >    info->setBoxM(hmnew);
247 >  }
248   }
249  
250 < void NPTf::moveB( void ){
250 > template<typename T> bool NPTf<T>::etaConverged() {
251 >  int i;
252 >  double diffEta, sumEta;
253  
254 <  int i, j;
255 <  DirectionalAtom* dAtom;
256 <  double Tb[3], ji[3];
196 <  double vel[3], frc[3];
197 <  double mass;
254 >  sumEta = 0;
255 >  for(i = 0; i < 3; i++)
256 >    sumEta += pow(prevEta[i][i] - eta[i][i], 2);
257  
258 <  double instaTemp, instaPress, instaVol;
200 <  double tt2, tb2;
201 <  double sc[3];
202 <  double press[3][3], vScale[3][3];
203 <  
204 <  tt2 = tauThermostat * tauThermostat;
205 <  tb2 = tauBarostat * tauBarostat;
258 >  diffEta = sqrt( sumEta / 3.0 );
259  
260 <  instaTemp = tStats->getTemperature();
261 <  tStats->getPressureTensor(press);
209 <  instaVol = tStats->getVolume();
210 <  
211 <  // first evolve chi a half step
212 <  
213 <  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
214 <  
215 <  for (i = 0; i < 3; i++ ) {
216 <    for (j = 0; j < 3; j++ ) {
217 <      if (i == j) {
260 >  return ( diffEta <= etaTolerance );
261 > }
262  
263 <        eta[i][j] += dt2 * instaVol *
220 <          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
263 > template<typename T> double NPTf<T>::getConservedQuantity(void){
264  
265 <        vScale[i][j] = eta[i][j] + chi;
266 <        
267 <      } else {
268 <        
269 <        eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2);
265 >  double conservedQuantity;
266 >  double totalEnergy;
267 >  double thermostat_kinetic;
268 >  double thermostat_potential;
269 >  double barostat_kinetic;
270 >  double barostat_potential;
271 >  double trEta;
272 >  double a[3][3], b[3][3];
273  
274 <        vScale[i][j] = eta[i][j];
229 <        
230 <      }
231 <    }
232 <  }
274 >  totalEnergy = tStats->getTotalE();
275  
276 <  for( i=0; i<nAtoms; i++ ){
276 >  thermostat_kinetic = fkBT * tt2 * chi * chi /
277 >    (2.0 * eConvert);
278  
279 <    atoms[i]->getVel( vel );
237 <    atoms[i]->getFrc( frc );
279 >  thermostat_potential = fkBT* integralOfChidt / eConvert;
280  
281 <    mass = atoms[i]->getMass();
282 <    
283 <    // velocity half step
242 <        
243 <    info->matVecMul3( vScale, vel, sc );
244 <    
245 <    for (j = 0; j < 3; j++) {
246 <      vel[j] += dt2 * ((frc[j]  / mass) * eConvert - sc[j]);
247 <    }
281 >  transposeMat3(eta, a);
282 >  matMul3(a, eta, b);
283 >  trEta = matTrace3(b);
284  
285 <    atoms[i]->setVel( vel );
286 <    
251 <    if( atoms[i]->isDirectional() ){
285 >  barostat_kinetic = NkBT * tb2 * trEta /
286 >    (2.0 * eConvert);
287  
288 <      dAtom = (DirectionalAtom *)atoms[i];
289 <          
255 <      // get and convert the torque to body frame
256 <      
257 <      dAtom->getTrq( Tb );
258 <      dAtom->lab2Body( Tb );
259 <      
260 <      // get the angular momentum, and propagate a half step
261 <      
262 <      dAtom->getJ( ji );
263 <      
264 <      for (j=0; j < 3; j++)
265 <        ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
266 <      
267 <      dAtom->setJ( ji );
288 >  barostat_potential = (targetPressure * tStats->getVolume() / p_convert) /
289 >    eConvert;
290  
291 <    }                    
292 <  }
271 < }
291 >  conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential +
292 >    barostat_kinetic + barostat_potential;
293  
294 < int NPTf::readyCheck() {
274 <
275 <  // First check to see if we have a target temperature.
276 <  // Not having one is fatal.
277 <  
278 <  if (!have_target_temp) {
279 <    sprintf( painCave.errMsg,
280 <             "NPTf error: You can't use the NPTf integrator\n"
281 <             "   without a targetTemp!\n"
282 <             );
283 <    painCave.isFatal = 1;
284 <    simError();
285 <    return -1;
286 <  }
294 >  return conservedQuantity;
295  
296 <  if (!have_target_pressure) {
289 <    sprintf( painCave.errMsg,
290 <             "NPTf error: You can't use the NPTf integrator\n"
291 <             "   without a targetPressure!\n"
292 <             );
293 <    painCave.isFatal = 1;
294 <    simError();
295 <    return -1;
296 <  }
297 <  
298 <  // We must set tauThermostat.
299 <  
300 <  if (!have_tau_thermostat) {
301 <    sprintf( painCave.errMsg,
302 <             "NPTf error: If you use the NPTf\n"
303 <             "   integrator, you must set tauThermostat.\n");
304 <    painCave.isFatal = 1;
305 <    simError();
306 <    return -1;
307 <  }    
296 > }
297  
298 <  // We must set tauBarostat.
299 <  
300 <  if (!have_tau_barostat) {
301 <    sprintf( painCave.errMsg,
313 <             "NPTf error: If you use the NPTf\n"
314 <             "   integrator, you must set tauBarostat.\n");
315 <    painCave.isFatal = 1;
316 <    simError();
317 <    return -1;
318 <  }    
298 > template<typename T> string NPTf<T>::getAdditionalParameters(void){
299 >  string parameters;
300 >  const int BUFFERSIZE = 2000; // size of the read buffer
301 >  char buffer[BUFFERSIZE];
302  
303 <  // We need NkBT a lot, so just set it here:
303 >  sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt);
304 >  parameters += buffer;
305  
306 <  NkBT = (double)info->ndf * kB * targetTemp;
306 >  for(int i = 0; i < 3; i++){
307 >    sprintf(buffer,"\t%G\t%G\t%G;", eta[i][0], eta[i][1], eta[i][2]);
308 >    parameters += buffer;
309 >  }
310  
311 <  return 1;
311 >  return parameters;
312 >
313   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines