| 1 | #include <cmath> | 
| 2 | #include "Atom.hpp" | 
| 3 | #include "SRI.hpp" | 
| 4 | #include "AbstractClasses.hpp" | 
| 5 | #include "SimInfo.hpp" | 
| 6 | #include "ForceFields.hpp" | 
| 7 | #include "Thermo.hpp" | 
| 8 | #include "ReadWrite.hpp" | 
| 9 | #include "Integrator.hpp" | 
| 10 | #include "simError.h" | 
| 11 |  | 
| 12 |  | 
| 13 | // Basic non-isotropic thermostating and barostating via the Melchionna | 
| 14 | // modification of the Hoover algorithm: | 
| 15 | // | 
| 16 | //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, | 
| 17 | //       Molec. Phys., 78, 533. | 
| 18 | // | 
| 19 | //           and | 
| 20 | // | 
| 21 | //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 22 |  | 
| 23 | template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff): | 
| 24 | T( theInfo, the_ff ) | 
| 25 | { | 
| 26 | int i, j; | 
| 27 | chi = 0.0; | 
| 28 |  | 
| 29 | for(i = 0; i < 3; i++) | 
| 30 | for (j = 0; j < 3; j++) | 
| 31 | eta[i][j] = 0.0; | 
| 32 |  | 
| 33 | have_tau_thermostat = 0; | 
| 34 | have_tau_barostat = 0; | 
| 35 | have_target_temp = 0; | 
| 36 | have_target_pressure = 0; | 
| 37 | } | 
| 38 |  | 
| 39 | template<typename T> void NPTf<T>::moveA() { | 
| 40 |  | 
| 41 | int i, j, k; | 
| 42 | DirectionalAtom* dAtom; | 
| 43 | double Tb[3], ji[3]; | 
| 44 | double A[3][3], I[3][3]; | 
| 45 | double angle, mass; | 
| 46 | double vel[3], pos[3], frc[3]; | 
| 47 |  | 
| 48 | double rj[3]; | 
| 49 | double instaTemp, instaPress, instaVol; | 
| 50 | double tt2, tb2; | 
| 51 | double sc[3]; | 
| 52 | double eta2ij; | 
| 53 | double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3]; | 
| 54 | double bigScale, smallScale, offDiagMax; | 
| 55 |  | 
| 56 | tt2 = tauThermostat * tauThermostat; | 
| 57 | tb2 = tauBarostat * tauBarostat; | 
| 58 |  | 
| 59 | instaTemp = tStats->getTemperature(); | 
| 60 | tStats->getPressureTensor(press); | 
| 61 | instaVol = tStats->getVolume(); | 
| 62 |  | 
| 63 | // first evolve chi a half step | 
| 64 |  | 
| 65 | chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; | 
| 66 |  | 
| 67 | for (i = 0; i < 3; i++ ) { | 
| 68 | for (j = 0; j < 3; j++ ) { | 
| 69 | if (i == j) { | 
| 70 |  | 
| 71 | eta[i][j] += dt2 * instaVol * | 
| 72 | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); | 
| 73 |  | 
| 74 | vScale[i][j] = eta[i][j] + chi; | 
| 75 |  | 
| 76 | } else { | 
| 77 |  | 
| 78 | eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); | 
| 79 |  | 
| 80 | vScale[i][j] = eta[i][j]; | 
| 81 |  | 
| 82 | } | 
| 83 | } | 
| 84 | } | 
| 85 |  | 
| 86 | for( i=0; i<nAtoms; i++ ){ | 
| 87 |  | 
| 88 | atoms[i]->getVel( vel ); | 
| 89 | atoms[i]->getPos( pos ); | 
| 90 | atoms[i]->getFrc( frc ); | 
| 91 |  | 
| 92 | mass = atoms[i]->getMass(); | 
| 93 |  | 
| 94 | // velocity half step | 
| 95 |  | 
| 96 | info->matVecMul3( vScale, vel, sc ); | 
| 97 |  | 
| 98 | for (j = 0; j < 3; j++) { | 
| 99 | vel[j] += dt2 * ((frc[j]  / mass) * eConvert - sc[j]); | 
| 100 | rj[j] = pos[j]; | 
| 101 | } | 
| 102 |  | 
| 103 | atoms[i]->setVel( vel ); | 
| 104 |  | 
| 105 | // position whole step | 
| 106 |  | 
| 107 | info->wrapVector(rj); | 
| 108 |  | 
| 109 | info->matVecMul3( eta, rj, sc ); | 
| 110 |  | 
| 111 | for (j = 0; j < 3; j++ ) | 
| 112 | pos[j] += dt * (vel[j] + sc[j]); | 
| 113 |  | 
| 114 | atoms[i]->setPos( pos ); | 
| 115 |  | 
| 116 | if( atoms[i]->isDirectional() ){ | 
| 117 |  | 
| 118 | dAtom = (DirectionalAtom *)atoms[i]; | 
| 119 |  | 
| 120 | // get and convert the torque to body frame | 
| 121 |  | 
| 122 | dAtom->getTrq( Tb ); | 
| 123 | dAtom->lab2Body( Tb ); | 
| 124 |  | 
| 125 | // get the angular momentum, and propagate a half step | 
| 126 |  | 
| 127 | dAtom->getJ( ji ); | 
| 128 |  | 
| 129 | for (j=0; j < 3; j++) | 
| 130 | ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); | 
| 131 |  | 
| 132 | // use the angular velocities to propagate the rotation matrix a | 
| 133 | // full time step | 
| 134 |  | 
| 135 | dAtom->getA(A); | 
| 136 | dAtom->getI(I); | 
| 137 |  | 
| 138 | // rotate about the x-axis | 
| 139 | angle = dt2 * ji[0] / I[0][0]; | 
| 140 | this->rotate( 1, 2, angle, ji, A ); | 
| 141 |  | 
| 142 | // rotate about the y-axis | 
| 143 | angle = dt2 * ji[1] / I[1][1]; | 
| 144 | this->rotate( 2, 0, angle, ji, A ); | 
| 145 |  | 
| 146 | // rotate about the z-axis | 
| 147 | angle = dt * ji[2] / I[2][2]; | 
| 148 | this->rotate( 0, 1, angle, ji, A); | 
| 149 |  | 
| 150 | // rotate about the y-axis | 
| 151 | angle = dt2 * ji[1] / I[1][1]; | 
| 152 | this->rotate( 2, 0, angle, ji, A ); | 
| 153 |  | 
| 154 | // rotate about the x-axis | 
| 155 | angle = dt2 * ji[0] / I[0][0]; | 
| 156 | this->rotate( 1, 2, angle, ji, A ); | 
| 157 |  | 
| 158 | dAtom->setJ( ji ); | 
| 159 | dAtom->setA( A  ); | 
| 160 | } | 
| 161 | } | 
| 162 |  | 
| 163 | // Scale the box after all the positions have been moved: | 
| 164 |  | 
| 165 | // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat) | 
| 166 | //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2) | 
| 167 |  | 
| 168 | bigScale = 1.0; | 
| 169 | smallScale = 1.0; | 
| 170 | offDiagMax = 0.0; | 
| 171 |  | 
| 172 | for(i=0; i<3; i++){ | 
| 173 | for(j=0; j<3; j++){ | 
| 174 |  | 
| 175 | // Calculate the matrix Product of the eta array (we only need | 
| 176 | // the ij element right now): | 
| 177 |  | 
| 178 | eta2ij = 0.0; | 
| 179 | for(k=0; k<3; k++){ | 
| 180 | eta2ij += eta[i][k] * eta[k][j]; | 
| 181 | } | 
| 182 |  | 
| 183 | scaleMat[i][j] = 0.0; | 
| 184 | // identity matrix (see above): | 
| 185 | if (i == j) scaleMat[i][j] = 1.0; | 
| 186 | // Taylor expansion for the exponential truncated at second order: | 
| 187 | scaleMat[i][j] += dt*eta[i][j]  + 0.5*dt*dt*eta2ij; | 
| 188 |  | 
| 189 | if (i != j) | 
| 190 | if (fabs(scaleMat[i][j]) > offDiagMax) | 
| 191 | offDiagMax = fabs(scaleMat[i][j]); | 
| 192 |  | 
| 193 | } | 
| 194 |  | 
| 195 | if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; | 
| 196 | if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; | 
| 197 | } | 
| 198 |  | 
| 199 | if ((bigScale > 1.1) || (smallScale < 0.9)) { | 
| 200 | sprintf( painCave.errMsg, | 
| 201 | "NPTf error: Attempting a Box scaling of more than 10 percent.\n" | 
| 202 | " Check your tauBarostat, as it is probably too small!\n\n" | 
| 203 | " scaleMat = [%lf\t%lf\t%lf]\n" | 
| 204 | "            [%lf\t%lf\t%lf]\n" | 
| 205 | "            [%lf\t%lf\t%lf]\n", | 
| 206 | scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], | 
| 207 | scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], | 
| 208 | scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); | 
| 209 | painCave.isFatal = 1; | 
| 210 | simError(); | 
| 211 | } else if (offDiagMax > 0.1) { | 
| 212 | sprintf( painCave.errMsg, | 
| 213 | "NPTf error: Attempting an off-diagonal Box scaling of more than 10 percent.\n" | 
| 214 | " Check your tauBarostat, as it is probably too small!\n\n" | 
| 215 | " scaleMat = [%lf\t%lf\t%lf]\n" | 
| 216 | "            [%lf\t%lf\t%lf]\n" | 
| 217 | "            [%lf\t%lf\t%lf]\n", | 
| 218 | scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], | 
| 219 | scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], | 
| 220 | scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); | 
| 221 | painCave.isFatal = 1; | 
| 222 | simError(); | 
| 223 | } else { | 
| 224 | info->getBoxM(hm); | 
| 225 | info->matMul3(hm, scaleMat, hmnew); | 
| 226 | info->setBoxM(hmnew); | 
| 227 | } | 
| 228 |  | 
| 229 | } | 
| 230 |  | 
| 231 | template<typename T> void NPTf<T>::moveB( void ){ | 
| 232 |  | 
| 233 | int i, j; | 
| 234 | DirectionalAtom* dAtom; | 
| 235 | double Tb[3], ji[3]; | 
| 236 | double vel[3], frc[3]; | 
| 237 | double mass; | 
| 238 |  | 
| 239 | double instaTemp, instaPress, instaVol; | 
| 240 | double tt2, tb2; | 
| 241 | double sc[3]; | 
| 242 | double press[3][3], vScale[3][3]; | 
| 243 |  | 
| 244 | tt2 = tauThermostat * tauThermostat; | 
| 245 | tb2 = tauBarostat * tauBarostat; | 
| 246 |  | 
| 247 | instaTemp = tStats->getTemperature(); | 
| 248 | tStats->getPressureTensor(press); | 
| 249 | instaVol = tStats->getVolume(); | 
| 250 |  | 
| 251 | // first evolve chi a half step | 
| 252 |  | 
| 253 | chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; | 
| 254 |  | 
| 255 | for (i = 0; i < 3; i++ ) { | 
| 256 | for (j = 0; j < 3; j++ ) { | 
| 257 | if (i == j) { | 
| 258 |  | 
| 259 | eta[i][j] += dt2 * instaVol * | 
| 260 | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); | 
| 261 |  | 
| 262 | vScale[i][j] = eta[i][j] + chi; | 
| 263 |  | 
| 264 | } else { | 
| 265 |  | 
| 266 | eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); | 
| 267 |  | 
| 268 | vScale[i][j] = eta[i][j]; | 
| 269 |  | 
| 270 | } | 
| 271 | } | 
| 272 | } | 
| 273 |  | 
| 274 | for( i=0; i<nAtoms; i++ ){ | 
| 275 |  | 
| 276 | atoms[i]->getVel( vel ); | 
| 277 | atoms[i]->getFrc( frc ); | 
| 278 |  | 
| 279 | mass = atoms[i]->getMass(); | 
| 280 |  | 
| 281 | // velocity half step | 
| 282 |  | 
| 283 | info->matVecMul3( vScale, vel, sc ); | 
| 284 |  | 
| 285 | for (j = 0; j < 3; j++) { | 
| 286 | vel[j] += dt2 * ((frc[j]  / mass) * eConvert - sc[j]); | 
| 287 | } | 
| 288 |  | 
| 289 | atoms[i]->setVel( vel ); | 
| 290 |  | 
| 291 | if( atoms[i]->isDirectional() ){ | 
| 292 |  | 
| 293 | dAtom = (DirectionalAtom *)atoms[i]; | 
| 294 |  | 
| 295 | // get and convert the torque to body frame | 
| 296 |  | 
| 297 | dAtom->getTrq( Tb ); | 
| 298 | dAtom->lab2Body( Tb ); | 
| 299 |  | 
| 300 | // get the angular momentum, and propagate a half step | 
| 301 |  | 
| 302 | dAtom->getJ( ji ); | 
| 303 |  | 
| 304 | for (j=0; j < 3; j++) | 
| 305 | ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); | 
| 306 |  | 
| 307 | dAtom->setJ( ji ); | 
| 308 |  | 
| 309 | } | 
| 310 | } | 
| 311 | } | 
| 312 |  | 
| 313 | template<typename T> void NPTf<T>::resetIntegrator() { | 
| 314 | int i,j; | 
| 315 |  | 
| 316 | chi = 0.0; | 
| 317 |  | 
| 318 | for(i = 0; i < 3; i++) | 
| 319 | for (j = 0; j < 3; j++) | 
| 320 | eta[i][j] = 0.0; | 
| 321 |  | 
| 322 | } | 
| 323 |  | 
| 324 | template<typename T> int NPTf<T>::readyCheck() { | 
| 325 |  | 
| 326 | //check parent's readyCheck() first | 
| 327 | if (T::readyCheck() == -1) | 
| 328 | return -1; | 
| 329 |  | 
| 330 | // First check to see if we have a target temperature. | 
| 331 | // Not having one is fatal. | 
| 332 |  | 
| 333 | if (!have_target_temp) { | 
| 334 | sprintf( painCave.errMsg, | 
| 335 | "NPTf error: You can't use the NPTf integrator\n" | 
| 336 | "   without a targetTemp!\n" | 
| 337 | ); | 
| 338 | painCave.isFatal = 1; | 
| 339 | simError(); | 
| 340 | return -1; | 
| 341 | } | 
| 342 |  | 
| 343 | if (!have_target_pressure) { | 
| 344 | sprintf( painCave.errMsg, | 
| 345 | "NPTf error: You can't use the NPTf integrator\n" | 
| 346 | "   without a targetPressure!\n" | 
| 347 | ); | 
| 348 | painCave.isFatal = 1; | 
| 349 | simError(); | 
| 350 | return -1; | 
| 351 | } | 
| 352 |  | 
| 353 | // We must set tauThermostat. | 
| 354 |  | 
| 355 | if (!have_tau_thermostat) { | 
| 356 | sprintf( painCave.errMsg, | 
| 357 | "NPTf error: If you use the NPTf\n" | 
| 358 | "   integrator, you must set tauThermostat.\n"); | 
| 359 | painCave.isFatal = 1; | 
| 360 | simError(); | 
| 361 | return -1; | 
| 362 | } | 
| 363 |  | 
| 364 | // We must set tauBarostat. | 
| 365 |  | 
| 366 | if (!have_tau_barostat) { | 
| 367 | sprintf( painCave.errMsg, | 
| 368 | "NPTf error: If you use the NPTf\n" | 
| 369 | "   integrator, you must set tauBarostat.\n"); | 
| 370 | painCave.isFatal = 1; | 
| 371 | simError(); | 
| 372 | return -1; | 
| 373 | } | 
| 374 |  | 
| 375 | // We need NkBT a lot, so just set it here: | 
| 376 |  | 
| 377 | NkBT = (double)info->ndf * kB * targetTemp; | 
| 378 |  | 
| 379 | return 1; | 
| 380 | } |