ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/NPTf.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/NPTf.cpp (file contents):
Revision 577 by gezelter, Wed Jul 9 01:41:11 2003 UTC vs.
Revision 1253 by gezelter, Tue Jun 8 16:49:46 2004 UTC

# Line 1 | Line 1
1 + #include <math.h>
2 +
3 + #include "MatVec3.h"
4   #include "Atom.hpp"
5   #include "SRI.hpp"
6   #include "AbstractClasses.hpp"
# Line 6 | Line 9
9   #include "Thermo.hpp"
10   #include "ReadWrite.hpp"
11   #include "Integrator.hpp"
12 < #include "simError.h"
12 > #include "simError.h"
13  
14 + #ifdef IS_MPI
15 + #include "mpiSimulation.hpp"
16 + #endif
17  
18 < // Basic isotropic thermostating and barostating via the Melchionna
18 > // Basic non-isotropic thermostating and barostating via the Melchionna
19   // modification of the Hoover algorithm:
20   //
21   //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
22 < //       Molec. Phys., 78, 533.
22 > //       Molec. Phys., 78, 533.
23   //
24   //           and
25 < //
25 > //
26   //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
27  
28 < NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff):
29 <  Integrator( theInfo, the_ff )
28 > template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff):
29 >  T( theInfo, the_ff )
30   {
31 <  int i;
32 <  chi = 0.0;
33 <  for(i = 0; i < 9; i++) eta[i] = 0.0;
34 <  have_tau_thermostat = 0;
29 <  have_tau_barostat = 0;
30 <  have_target_temp = 0;
31 <  have_target_pressure = 0;
32 < }
31 >  GenericData* data;
32 >  DoubleArrayData * etaValue;
33 >  vector<double> etaArray;
34 >  int i,j;
35  
36 < void NPTf::moveA() {
37 <  
36 <  int i,j,k;
37 <  int atomIndex, aMatIndex;
38 <  DirectionalAtom* dAtom;
39 <  double Tb[3];
40 <  double ji[3];
41 <  double rj[3];
42 <  double instaTemp, instaPress, instaVol;
43 <  double tt2, tb2;
44 <  double angle;
45 <  double press[9];
46 <  const double p_convert = 1.63882576e8;
36 >  for(i = 0; i < 3; i++){
37 >    for (j = 0; j < 3; j++){
38  
39 <  tt2 = tauThermostat * tauThermostat;
40 <  tb2 = tauBarostat * tauBarostat;
39 >      eta[i][j] = 0.0;
40 >      oldEta[i][j] = 0.0;
41 >    }
42 >  }
43  
51  instaTemp = tStats->getTemperature();
52  tStats->getPressureTensor(press);
44  
45 <  for (i=0; i < 9; i++) press[i] *= p_convert;
45 >  if( theInfo->useInitXSstate ){
46 >    // retrieve eta array from simInfo if it exists
47 >    data = info->getProperty(ETAVALUE_ID);
48 >    if(data){
49 >      etaValue = dynamic_cast<DoubleArrayData*>(data);
50 >      
51 >      if(etaValue){
52 >        etaArray = etaValue->getData();
53 >        
54 >        for(i = 0; i < 3; i++){
55 >          for (j = 0; j < 3; j++){
56 >            eta[i][j] = etaArray[3*i+j];
57 >            oldEta[i][j] = eta[i][j];
58 >          }
59 >        }
60 >      }
61 >    }
62 >  }
63  
64 <  instaVol = tStats->getVolume();
57 <  
58 <  // first evolve chi a half step
59 <  
60 <  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
61 <  
62 <  eta[0] += dt2 * instaVol * (press[0] - targetPressure) / (NkBT*tb2);
63 <  eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2);
64 <  eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2);
65 <  eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2);
66 <  eta[4] += dt2 * instaVol * (press[4] - targetPressure) / (NkBT*tb2);
67 <  eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2);
68 <  eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2);
69 <  eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2);
70 <  eta[8] += dt2 * instaVol * (press[8] - targetPressure) / (NkBT*tb2);
71 <  
72 <  for( i=0; i<nAtoms; i++ ){
73 <    atomIndex = i * 3;
74 <    aMatIndex = i * 9;
75 <    
76 <    // velocity half step
77 <    
78 <    vx = vel[atomIndex];
79 <    vy = vel[atomIndex+1];
80 <    vz = vel[atomIndex+2];
81 <    
82 <    scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz;
83 <    scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz;
84 <    scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz;
85 <    
86 <    vx += dt2 * ((frc[atomIndex]  /atoms[i]->getMass())*eConvert - scx);
87 <    vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy);
88 <    vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz);
64 > }
65  
66 <    vel[atomIndex] = vx;
91 <    vel[atomIndex+1] = vy;
92 <    vel[atomIndex+2] = vz;
66 > template<typename T> NPTf<T>::~NPTf() {
67  
68 <    // position whole step    
68 >  // empty for now
69 > }
70  
71 <    rj[0] = pos[atomIndex];
97 <    rj[1] = pos[atomIndex+1];
98 <    rj[2] = pos[atomIndex+2];
71 > template<typename T> void NPTf<T>::resetIntegrator() {
72  
73 <    info->wrapVector(rj);
73 >  int i, j;
74  
75 <    scx = eta[0]*rj[0] + eta[1]*rj[1] + eta[2]*rj[2];
76 <    scy = eta[3]*rj[0] + eta[4]*rj[1] + eta[5]*rj[2];
77 <    scz = eta[6]*rj[0] + eta[7]*rj[1] + eta[8]*rj[2];
75 >  for(i = 0; i < 3; i++)
76 >    for (j = 0; j < 3; j++)
77 >      eta[i][j] = 0.0;
78  
79 <    pos[atomIndex] += dt * (vel[atomIndex] + scx);
80 <    pos[atomIndex+1] += dt * (vel[atomIndex+1] + scy);
108 <    pos[atomIndex+2] += dt * (vel[atomIndex+2] + scz);
109 <  
110 <    if( atoms[i]->isDirectional() ){
79 >  T::resetIntegrator();
80 > }
81  
82 <      dAtom = (DirectionalAtom *)atoms[i];
113 <          
114 <      // get and convert the torque to body frame
115 <      
116 <      Tb[0] = dAtom->getTx();
117 <      Tb[1] = dAtom->getTy();
118 <      Tb[2] = dAtom->getTz();
119 <      
120 <      dAtom->lab2Body( Tb );
121 <      
122 <      // get the angular momentum, and propagate a half step
82 > template<typename T> void NPTf<T>::evolveEtaA() {
83  
84 <      ji[0] = dAtom->getJx();
85 <      ji[1] = dAtom->getJy();
86 <      ji[2] = dAtom->getJz();
87 <      
88 <      ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi);
89 <      ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi);
90 <      ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi);
91 <      
92 <      // use the angular velocities to propagate the rotation matrix a
133 <      // full time step
134 <      
135 <      // rotate about the x-axis      
136 <      angle = dt2 * ji[0] / dAtom->getIxx();
137 <      this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] );
138 <      
139 <      // rotate about the y-axis
140 <      angle = dt2 * ji[1] / dAtom->getIyy();
141 <      this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] );
142 <      
143 <      // rotate about the z-axis
144 <      angle = dt * ji[2] / dAtom->getIzz();
145 <      this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] );
146 <      
147 <      // rotate about the y-axis
148 <      angle = dt2 * ji[1] / dAtom->getIyy();
149 <      this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] );
150 <      
151 <       // rotate about the x-axis
152 <      angle = dt2 * ji[0] / dAtom->getIxx();
153 <      this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] );
154 <      
155 <      dAtom->setJx( ji[0] );
156 <      dAtom->setJy( ji[1] );
157 <      dAtom->setJz( ji[2] );
84 >  int i, j;
85 >
86 >  for(i = 0; i < 3; i ++){
87 >    for(j = 0; j < 3; j++){
88 >      if( i == j)
89 >        eta[i][j] += dt2 *  instaVol *
90 >          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
91 >      else
92 >        eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2);
93      }
159    
94    }
161
162  // Scale the box after all the positions have been moved:
95    
96 +  for(i = 0; i < 3; i++)
97 +    for (j = 0; j < 3; j++)
98 +      oldEta[i][j] = eta[i][j];
99 + }
100  
101 + template<typename T> void NPTf<T>::evolveEtaB() {
102  
103 <  // Use a taylor expansion for eta products
167 <  
168 <  info->getBoxM(hm);
169 <  
103 >  int i,j;
104  
105 +  for(i = 0; i < 3; i++)
106 +    for (j = 0; j < 3; j++)
107 +      prevEta[i][j] = eta[i][j];
108  
109 +  for(i = 0; i < 3; i ++){
110 +    for(j = 0; j < 3; j++){
111 +      if( i == j) {
112 +        eta[i][j] = oldEta[i][j] + dt2 *  instaVol *
113 +          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
114 +      } else {
115 +        eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2);
116 +      }
117 +    }
118 +  }
119 + }
120  
121 + template<typename T> void NPTf<T>::calcVelScale(void){
122 +  int i,j;
123  
124 +  for (i = 0; i < 3; i++ ) {
125 +    for (j = 0; j < 3; j++ ) {
126 +      vScale[i][j] = eta[i][j];
127  
128 <   info->scaleBox(exp(dt*eta));
128 >      if (i == j) {
129 >        vScale[i][j] += chi;
130 >      }
131 >    }
132 >  }
133 > }
134  
135 <
135 > template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) {
136 >
137 >  matVecMul3( vScale, vel, sc );
138   }
139  
140 < void NPTi::moveB( void ){
141 <  int i,j,k;
142 <  int atomIndex;
183 <  DirectionalAtom* dAtom;
184 <  double Tb[3];
185 <  double ji[3];
186 <  double instaTemp, instaPress, instaVol;
187 <  double tt2, tb2;
188 <  
189 <  tt2 = tauThermostat * tauThermostat;
190 <  tb2 = tauBarostat * tauBarostat;
140 > template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){
141 >  int j;
142 >  double myVel[3];
143  
144 <  instaTemp = tStats->getTemperature();
145 <  instaPress = tStats->getPressure();
194 <  instaVol = tStats->getVolume();
195 <
196 <  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
197 <  eta += dt2 * ( instaVol * (instaPress - targetPressure) / (NkBT*tb2));
144 >  for (j = 0; j < 3; j++)
145 >    myVel[j] = oldVel[3*index + j];
146    
147 <  for( i=0; i<nAtoms; i++ ){
148 <    atomIndex = i * 3;
149 <    
150 <    // velocity half step
151 <    for( j=atomIndex; j<(atomIndex+3); j++ )
152 <    for( j=atomIndex; j<(atomIndex+3); j++ )
153 <      vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert
154 <                       - vel[j]*(chi+eta));
155 <    
156 <    if( atoms[i]->isDirectional() ){
147 >  matVecMul3( vScale, myVel, sc );
148 > }
149 >
150 > template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3],
151 >                                               int index, double sc[3]){
152 >  int j;
153 >  double rj[3];
154 >
155 >  for(j=0; j<3; j++)
156 >    rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j];
157 >
158 >  matVecMul3( eta, rj, sc );
159 > }
160 >
161 > template<typename T> void NPTf<T>::scaleSimBox( void ){
162 >
163 >  int i,j,k;
164 >  double scaleMat[3][3];
165 >  double eta2ij;
166 >  double bigScale, smallScale, offDiagMax;
167 >  double hm[3][3], hmnew[3][3];
168 >
169 >
170 >
171 >  // Scale the box after all the positions have been moved:
172 >
173 >  // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat)
174 >  //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2)
175 >
176 >  bigScale = 1.0;
177 >  smallScale = 1.0;
178 >  offDiagMax = 0.0;
179 >
180 >  for(i=0; i<3; i++){
181 >    for(j=0; j<3; j++){
182 >
183 >      // Calculate the matrix Product of the eta array (we only need
184 >      // the ij element right now):
185 >
186 >      eta2ij = 0.0;
187 >      for(k=0; k<3; k++){
188 >        eta2ij += eta[i][k] * eta[k][j];
189 >      }
190 >
191 >      scaleMat[i][j] = 0.0;
192 >      // identity matrix (see above):
193 >      if (i == j) scaleMat[i][j] = 1.0;
194 >      // Taylor expansion for the exponential truncated at second order:
195 >      scaleMat[i][j] += dt*eta[i][j]  + 0.5*dt*dt*eta2ij;
196        
197 <      dAtom = (DirectionalAtom *)atoms[i];
198 <      
199 <      // get and convert the torque to body frame
200 <      
214 <      Tb[0] = dAtom->getTx();
215 <      Tb[1] = dAtom->getTy();
216 <      Tb[2] = dAtom->getTz();
217 <      
218 <      dAtom->lab2Body( Tb );
219 <      
220 <      // get the angular momentum, and complete the angular momentum
221 <      // half step
222 <      
223 <      ji[0] = dAtom->getJx();
224 <      ji[1] = dAtom->getJy();
225 <      ji[2] = dAtom->getJz();
226 <      
227 <      ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi);
228 <      ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi);
229 <      ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi);
230 <      
231 <      dAtom->setJx( ji[0] );
232 <      dAtom->setJy( ji[1] );
233 <      dAtom->setJz( ji[2] );
197 >
198 >      if (i != j)
199 >        if (fabs(scaleMat[i][j]) > offDiagMax)
200 >          offDiagMax = fabs(scaleMat[i][j]);
201      }
235  }
236 }
202  
203 < int NPTi::readyCheck() {
204 <
240 <  // First check to see if we have a target temperature.
241 <  // Not having one is fatal.
242 <  
243 <  if (!have_target_temp) {
244 <    sprintf( painCave.errMsg,
245 <             "NPTi error: You can't use the NPTi integrator\n"
246 <             "   without a targetTemp!\n"
247 <             );
248 <    painCave.isFatal = 1;
249 <    simError();
250 <    return -1;
203 >    if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i];
204 >    if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i];
205    }
206  
207 <  if (!have_target_pressure) {
207 >  if ((bigScale > 1.01) || (smallScale < 0.99)) {
208      sprintf( painCave.errMsg,
209 <             "NPTi error: You can't use the NPTi integrator\n"
210 <             "   without a targetPressure!\n"
211 <             );
209 >             "NPTf error: Attempting a Box scaling of more than 1 percent.\n"
210 >             " Check your tauBarostat, as it is probably too small!\n\n"
211 >             " scaleMat = [%lf\t%lf\t%lf]\n"
212 >             "            [%lf\t%lf\t%lf]\n"
213 >             "            [%lf\t%lf\t%lf]\n"
214 >             "      eta = [%lf\t%lf\t%lf]\n"
215 >             "            [%lf\t%lf\t%lf]\n"
216 >             "            [%lf\t%lf\t%lf]\n",
217 >             scaleMat[0][0],scaleMat[0][1],scaleMat[0][2],
218 >             scaleMat[1][0],scaleMat[1][1],scaleMat[1][2],
219 >             scaleMat[2][0],scaleMat[2][1],scaleMat[2][2],
220 >             eta[0][0],eta[0][1],eta[0][2],
221 >             eta[1][0],eta[1][1],eta[1][2],
222 >             eta[2][0],eta[2][1],eta[2][2]);
223      painCave.isFatal = 1;
224      simError();
225 <    return -1;
261 <  }
262 <  
263 <  // We must set tauThermostat.
264 <  
265 <  if (!have_tau_thermostat) {
225 >  } else if (offDiagMax > 0.01) {
226      sprintf( painCave.errMsg,
227 <             "NPTi error: If you use the NPTi\n"
228 <             "   integrator, you must set tauThermostat.\n");
227 >             "NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n"
228 >             " Check your tauBarostat, as it is probably too small!\n\n"
229 >             " scaleMat = [%lf\t%lf\t%lf]\n"
230 >             "            [%lf\t%lf\t%lf]\n"
231 >             "            [%lf\t%lf\t%lf]\n"
232 >             "      eta = [%lf\t%lf\t%lf]\n"
233 >             "            [%lf\t%lf\t%lf]\n"
234 >             "            [%lf\t%lf\t%lf]\n",
235 >             scaleMat[0][0],scaleMat[0][1],scaleMat[0][2],
236 >             scaleMat[1][0],scaleMat[1][1],scaleMat[1][2],
237 >             scaleMat[2][0],scaleMat[2][1],scaleMat[2][2],
238 >             eta[0][0],eta[0][1],eta[0][2],
239 >             eta[1][0],eta[1][1],eta[1][2],
240 >             eta[2][0],eta[2][1],eta[2][2]);
241      painCave.isFatal = 1;
242      simError();
243 <    return -1;
244 <  }    
243 >  } else {
244 >    info->getBoxM(hm);
245 >    matMul3(hm, scaleMat, hmnew);
246 >    info->setBoxM(hmnew);
247 >  }
248 > }
249  
250 <  // We must set tauBarostat.
251 <  
252 <  if (!have_tau_barostat) {
277 <    sprintf( painCave.errMsg,
278 <             "NPTi error: If you use the NPTi\n"
279 <             "   integrator, you must set tauBarostat.\n");
280 <    painCave.isFatal = 1;
281 <    simError();
282 <    return -1;
283 <  }    
250 > template<typename T> bool NPTf<T>::etaConverged() {
251 >  int i;
252 >  double diffEta, sumEta;
253  
254 <  // We need NkBT a lot, so just set it here:
254 >  sumEta = 0;
255 >  for(i = 0; i < 3; i++)
256 >    sumEta += pow(prevEta[i][i] - eta[i][i], 2);
257  
258 <  NkBT = (double)info->ndf * kB * targetTemp;
258 >  diffEta = sqrt( sumEta / 3.0 );
259  
260 <  return 1;
260 >  return ( diffEta <= etaTolerance );
261   }
262 +
263 + template<typename T> double NPTf<T>::getConservedQuantity(void){
264 +
265 +  double conservedQuantity;
266 +  double totalEnergy;
267 +  double thermostat_kinetic;
268 +  double thermostat_potential;
269 +  double barostat_kinetic;
270 +  double barostat_potential;
271 +  double trEta;
272 +  double a[3][3], b[3][3];
273 +
274 +  totalEnergy = tStats->getTotalE();
275 +
276 +  thermostat_kinetic = fkBT * tt2 * chi * chi /
277 +    (2.0 * eConvert);
278 +
279 +  thermostat_potential = fkBT* integralOfChidt / eConvert;
280 +
281 +  transposeMat3(eta, a);
282 +  matMul3(a, eta, b);
283 +  trEta = matTrace3(b);
284 +
285 +  barostat_kinetic = NkBT * tb2 * trEta /
286 +    (2.0 * eConvert);
287 +
288 +  barostat_potential = (targetPressure * tStats->getVolume() / p_convert) /
289 +    eConvert;
290 +
291 +  conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential +
292 +    barostat_kinetic + barostat_potential;
293 +
294 +  return conservedQuantity;
295 +
296 + }
297 +
298 + template<typename T> string NPTf<T>::getAdditionalParameters(void){
299 +  string parameters;
300 +  const int BUFFERSIZE = 2000; // size of the read buffer
301 +  char buffer[BUFFERSIZE];
302 +
303 +  sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt);
304 +  parameters += buffer;
305 +
306 +  for(int i = 0; i < 3; i++){
307 +    sprintf(buffer,"\t%G\t%G\t%G;", eta[i][0], eta[i][1], eta[i][2]);
308 +    parameters += buffer;
309 +  }
310 +
311 +  return parameters;
312 +
313 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines