| 22 |
|
NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
| 23 |
|
Integrator( theInfo, the_ff ) |
| 24 |
|
{ |
| 25 |
< |
int i; |
| 25 |
> |
int i, j; |
| 26 |
|
chi = 0.0; |
| 27 |
< |
for(i = 0; i < 9; i++) eta[i] = 0.0; |
| 27 |
> |
|
| 28 |
> |
for(i = 0; i < 3; i++) |
| 29 |
> |
for (j = 0; j < 3; j_++) |
| 30 |
> |
eta[i][j] = 0.0; |
| 31 |
> |
|
| 32 |
|
have_tau_thermostat = 0; |
| 33 |
|
have_tau_barostat = 0; |
| 34 |
|
have_target_temp = 0; |
| 42 |
|
DirectionalAtom* dAtom; |
| 43 |
|
double Tb[3]; |
| 44 |
|
double ji[3]; |
| 45 |
< |
double rj[3]; |
| 46 |
< |
double ident[3][3], eta1[3][3], eta2[3][3], hmnew[3][3]; |
| 47 |
< |
double hm[9]; |
| 44 |
< |
double vx, vy, vz; |
| 45 |
< |
double scx, scy, scz; |
| 46 |
< |
double instaTemp, instaPress, instaVol; |
| 47 |
< |
double tt2, tb2; |
| 45 |
> |
double ri[3], vi[3], sc[3]; |
| 46 |
> |
double instaTemp, instaVol; |
| 47 |
> |
double tt2, tb2, eta2ij; |
| 48 |
|
double angle; |
| 49 |
< |
double press[9]; |
| 49 |
> |
double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3]; |
| 50 |
|
|
| 51 |
|
tt2 = tauThermostat * tauThermostat; |
| 52 |
|
tb2 = tauBarostat * tauBarostat; |
| 58 |
|
// first evolve chi a half step |
| 59 |
|
|
| 60 |
|
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 61 |
< |
|
| 62 |
< |
eta[0] += dt2 * instaVol * (press[0] - targetPressure/p_convert) / |
| 63 |
< |
(NkBT*tb2); |
| 64 |
< |
eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2); |
| 65 |
< |
eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2); |
| 66 |
< |
eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2); |
| 67 |
< |
eta[4] += dt2 * instaVol * (press[4] - targetPressure/p_convert) / |
| 68 |
< |
(NkBT*tb2); |
| 69 |
< |
eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2); |
| 70 |
< |
eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2); |
| 71 |
< |
eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2); |
| 72 |
< |
eta[8] += dt2 * instaVol * (press[8] - targetPressure/p_convert) / |
| 73 |
< |
(NkBT*tb2); |
| 74 |
< |
|
| 61 |
> |
|
| 62 |
> |
for (i = 0; i < 3; i++ ) { |
| 63 |
> |
for (j = 0; j < 3; j++ ) { |
| 64 |
> |
if (i == j) { |
| 65 |
> |
|
| 66 |
> |
eta[i][j] += dt2 * instaVol * |
| 67 |
> |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
| 68 |
> |
|
| 69 |
> |
vScale[i][j] = eta[i][j] + chi; |
| 70 |
> |
|
| 71 |
> |
} else { |
| 72 |
> |
|
| 73 |
> |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
| 74 |
> |
|
| 75 |
> |
vScale[i][j] = eta[i][j]; |
| 76 |
> |
|
| 77 |
> |
} |
| 78 |
> |
} |
| 79 |
> |
} |
| 80 |
> |
|
| 81 |
|
for( i=0; i<nAtoms; i++ ){ |
| 82 |
|
atomIndex = i * 3; |
| 83 |
|
aMatIndex = i * 9; |
| 84 |
|
|
| 85 |
|
// velocity half step |
| 86 |
|
|
| 87 |
< |
vx = vel[atomIndex]; |
| 88 |
< |
vy = vel[atomIndex+1]; |
| 89 |
< |
vz = vel[atomIndex+2]; |
| 87 |
> |
vi[0] = vel[atomIndex]; |
| 88 |
> |
vi[1] = vel[atomIndex+1]; |
| 89 |
> |
vi[2] = vel[atomIndex+2]; |
| 90 |
|
|
| 91 |
< |
scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz; |
| 86 |
< |
scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz; |
| 87 |
< |
scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz; |
| 91 |
> |
info->matVecMul3( vScale, vi, sc ); |
| 92 |
|
|
| 93 |
< |
vx += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - scx); |
| 94 |
< |
vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy); |
| 95 |
< |
vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz); |
| 93 |
> |
vi[0] += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - sc[0]); |
| 94 |
> |
vi[1] += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - sc[1]); |
| 95 |
> |
vi[2] += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - sc[2]); |
| 96 |
|
|
| 97 |
< |
vel[atomIndex] = vx; |
| 98 |
< |
vel[atomIndex+1] = vy; |
| 99 |
< |
vel[atomIndex+2] = vz; |
| 97 |
> |
vel[atomIndex] = vi[0] |
| 98 |
> |
vel[atomIndex+1] = vi[1]; |
| 99 |
> |
vel[atomIndex+2] = vi[2]; |
| 100 |
|
|
| 101 |
|
// position whole step |
| 102 |
|
|
| 103 |
< |
rj[0] = pos[atomIndex]; |
| 104 |
< |
rj[1] = pos[atomIndex+1]; |
| 105 |
< |
rj[2] = pos[atomIndex+2]; |
| 103 |
> |
ri[0] = pos[atomIndex]; |
| 104 |
> |
ri[1] = pos[atomIndex+1]; |
| 105 |
> |
ri[2] = pos[atomIndex+2]; |
| 106 |
|
|
| 107 |
< |
info->wrapVector(rj); |
| 107 |
> |
info->wrapVector(ri); |
| 108 |
|
|
| 109 |
< |
scx = eta[0]*rj[0] + eta[1]*rj[1] + eta[2]*rj[2]; |
| 106 |
< |
scy = eta[3]*rj[0] + eta[4]*rj[1] + eta[5]*rj[2]; |
| 107 |
< |
scz = eta[6]*rj[0] + eta[7]*rj[1] + eta[8]*rj[2]; |
| 109 |
> |
info->matVecMul3( eta, ri, sc ); |
| 110 |
|
|
| 111 |
< |
pos[atomIndex] += dt * (vel[atomIndex] + scx); |
| 112 |
< |
pos[atomIndex+1] += dt * (vel[atomIndex+1] + scy); |
| 113 |
< |
pos[atomIndex+2] += dt * (vel[atomIndex+2] + scz); |
| 111 |
> |
pos[atomIndex] += dt * (vel[atomIndex] + sc[0]); |
| 112 |
> |
pos[atomIndex+1] += dt * (vel[atomIndex+1] + sc[1]); |
| 113 |
> |
pos[atomIndex+2] += dt * (vel[atomIndex+2] + sc[2]); |
| 114 |
|
|
| 115 |
|
if( atoms[i]->isDirectional() ){ |
| 116 |
|
|
| 172 |
|
|
| 173 |
|
for(i=0; i<3; i++){ |
| 174 |
|
for(j=0; j<3; j++){ |
| 175 |
< |
ident[i][j] = 0.0; |
| 176 |
< |
eta1[i][j] = eta[3*i+j]; |
| 177 |
< |
eta2[i][j] = 0.0; |
| 178 |
< |
for(k=0; k<3; k++){ |
| 179 |
< |
eta2[i][j] += eta[3*i+k] * eta[3*k+j]; |
| 175 |
> |
|
| 176 |
> |
// Calculate the matrix Product of the eta array (we only need |
| 177 |
> |
// the ij element right now): |
| 178 |
> |
|
| 179 |
> |
eta2ij = 0.0; |
| 180 |
> |
for(k=0; k<3; k++){ |
| 181 |
> |
eta2ij += eta[i][k] * eta[k][j]; |
| 182 |
|
} |
| 183 |
+ |
|
| 184 |
+ |
scaleMat[i][j] = 0.0; |
| 185 |
+ |
// identity matrix (see above): |
| 186 |
+ |
if (i == j) scaleMat[i][j] = 1.0; |
| 187 |
+ |
// Taylor expansion for the exponential truncated at second order: |
| 188 |
+ |
scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij; |
| 189 |
+ |
|
| 190 |
|
} |
| 180 |
– |
ident[i][i] = 1.0; |
| 191 |
|
} |
| 182 |
– |
|
| 192 |
|
|
| 193 |
|
info->getBoxM(hm); |
| 194 |
< |
|
| 195 |
< |
for(i=0; i<3; i++){ |
| 187 |
< |
for(j=0; j<3; j++){ |
| 188 |
< |
hmnew[i][j] = 0.0; |
| 189 |
< |
for(k=0; k<3; k++){ |
| 190 |
< |
// remember that hmat has transpose ordering for Fortran compat: |
| 191 |
< |
hmnew[i][j] += hm[3*k+i] * (ident[k][j] |
| 192 |
< |
+ dt * eta1[k][j] |
| 193 |
< |
+ 0.5 * dt * dt * eta2[k][j]); |
| 194 |
< |
} |
| 195 |
< |
} |
| 196 |
< |
} |
| 194 |
> |
info->matMul3(hm, scaleMat, hmnew); |
| 195 |
> |
info->setBoxM(hmnew); |
| 196 |
|
|
| 198 |
– |
for (i = 0; i < 3; i++) { |
| 199 |
– |
for (j = 0; j < 3; j++) { |
| 200 |
– |
// remember that hmat has transpose ordering for Fortran compat: |
| 201 |
– |
hm[3*j + i] = hmnew[i][j]; |
| 202 |
– |
} |
| 203 |
– |
} |
| 204 |
– |
|
| 205 |
– |
info->setBoxM(hm); |
| 206 |
– |
|
| 197 |
|
} |
| 198 |
|
|
| 199 |
|
void NPTf::moveB( void ){ |
| 200 |
< |
int i,j,k; |
| 200 |
> |
int i,j, k; |
| 201 |
|
int atomIndex; |
| 202 |
|
DirectionalAtom* dAtom; |
| 203 |
|
double Tb[3]; |
| 204 |
|
double ji[3]; |
| 205 |
< |
double press[9]; |
| 205 |
> |
double vi[3], sc[3]; |
| 206 |
|
double instaTemp, instaVol; |
| 207 |
|
double tt2, tb2; |
| 208 |
< |
double vx, vy, vz; |
| 219 |
< |
double scx, scy, scz; |
| 220 |
< |
const double p_convert = 1.63882576e8; |
| 208 |
> |
double press[3][3], vScale[3][3]; |
| 209 |
|
|
| 210 |
|
tt2 = tauThermostat * tauThermostat; |
| 211 |
|
tb2 = tauBarostat * tauBarostat; |
| 218 |
|
|
| 219 |
|
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 220 |
|
|
| 221 |
< |
eta[0] += dt2 * instaVol * (press[0] - targetPressure/p_convert) / |
| 222 |
< |
(NkBT*tb2); |
| 223 |
< |
eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2); |
| 236 |
< |
eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2); |
| 237 |
< |
eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2); |
| 238 |
< |
eta[4] += dt2 * instaVol * (press[4] - targetPressure/p_convert) / |
| 239 |
< |
(NkBT*tb2); |
| 240 |
< |
eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2); |
| 241 |
< |
eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2); |
| 242 |
< |
eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2); |
| 243 |
< |
eta[8] += dt2 * instaVol * (press[8] - targetPressure/p_convert) / |
| 244 |
< |
(NkBT*tb2); |
| 221 |
> |
for (i = 0; i < 3; i++ ) { |
| 222 |
> |
for (j = 0; j < 3; j++ ) { |
| 223 |
> |
if (i == j) { |
| 224 |
|
|
| 225 |
+ |
eta[i][j] += dt2 * instaVol * |
| 226 |
+ |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
| 227 |
+ |
|
| 228 |
+ |
vScale[i][j] = eta[i][j] + chi; |
| 229 |
+ |
|
| 230 |
+ |
} else { |
| 231 |
+ |
|
| 232 |
+ |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
| 233 |
+ |
|
| 234 |
+ |
vScale[i][j] = eta[i][j]; |
| 235 |
+ |
|
| 236 |
+ |
} |
| 237 |
+ |
} |
| 238 |
+ |
} |
| 239 |
+ |
|
| 240 |
|
for( i=0; i<nAtoms; i++ ){ |
| 241 |
|
atomIndex = i * 3; |
| 242 |
|
|
| 243 |
|
// velocity half step |
| 244 |
|
|
| 245 |
< |
vx = vel[atomIndex]; |
| 246 |
< |
vy = vel[atomIndex+1]; |
| 247 |
< |
vz = vel[atomIndex+2]; |
| 245 |
> |
vi[0] = vel[atomIndex]; |
| 246 |
> |
vi[1] = vel[atomIndex+1]; |
| 247 |
> |
vi[2] = vel[atomIndex+2]; |
| 248 |
|
|
| 249 |
< |
scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz; |
| 256 |
< |
scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz; |
| 257 |
< |
scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz; |
| 249 |
> |
info->matVecMul3( vScale, vi, sc ); |
| 250 |
|
|
| 251 |
< |
vx += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - scx); |
| 252 |
< |
vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy); |
| 253 |
< |
vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz); |
| 251 |
> |
vi[0] += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - sc[0]); |
| 252 |
> |
vi[1] += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - sc[1]); |
| 253 |
> |
vi[2] += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - sc[2]); |
| 254 |
|
|
| 255 |
< |
vel[atomIndex] = vx; |
| 256 |
< |
vel[atomIndex+1] = vy; |
| 257 |
< |
vel[atomIndex+2] = vz; |
| 255 |
> |
vel[atomIndex] = vi[0] |
| 256 |
> |
vel[atomIndex+1] = vi[1]; |
| 257 |
> |
vel[atomIndex+2] = vi[2]; |
| 258 |
|
|
| 259 |
|
if( atoms[i]->isDirectional() ){ |
| 260 |
|
|