1 |
+ |
#include <math.h> |
2 |
+ |
|
3 |
|
#include "Atom.hpp" |
4 |
|
#include "SRI.hpp" |
5 |
|
#include "AbstractClasses.hpp" |
8 |
|
#include "Thermo.hpp" |
9 |
|
#include "ReadWrite.hpp" |
10 |
|
#include "Integrator.hpp" |
11 |
< |
#include "simError.h" |
11 |
> |
#include "simError.h" |
12 |
|
|
13 |
+ |
#ifdef IS_MPI |
14 |
+ |
#include "mpiSimulation.hpp" |
15 |
+ |
#endif |
16 |
|
|
17 |
< |
// Basic isotropic thermostating and barostating via the Melchionna |
17 |
> |
// Basic non-isotropic thermostating and barostating via the Melchionna |
18 |
|
// modification of the Hoover algorithm: |
19 |
|
// |
20 |
|
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
21 |
< |
// Molec. Phys., 78, 533. |
21 |
> |
// Molec. Phys., 78, 533. |
22 |
|
// |
23 |
|
// and |
24 |
< |
// |
24 |
> |
// |
25 |
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
26 |
|
|
27 |
< |
NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
28 |
< |
Integrator( theInfo, the_ff ) |
27 |
> |
template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
28 |
> |
T( theInfo, the_ff ) |
29 |
|
{ |
30 |
< |
int i; |
31 |
< |
chi = 0.0; |
32 |
< |
for(i = 0; i < 9; i++) eta[i] = 0.0; |
33 |
< |
have_tau_thermostat = 0; |
29 |
< |
have_tau_barostat = 0; |
30 |
< |
have_target_temp = 0; |
31 |
< |
have_target_pressure = 0; |
32 |
< |
} |
30 |
> |
GenericData* data; |
31 |
> |
DoubleArrayData * etaValue; |
32 |
> |
vector<double> etaArray; |
33 |
> |
int i,j; |
34 |
|
|
35 |
< |
void NPTf::moveA() { |
36 |
< |
|
36 |
< |
int i,j,k; |
37 |
< |
int atomIndex, aMatIndex; |
38 |
< |
DirectionalAtom* dAtom; |
39 |
< |
double Tb[3]; |
40 |
< |
double ji[3]; |
41 |
< |
double rj[3]; |
42 |
< |
double instaTemp, instaPress, instaVol; |
43 |
< |
double tt2, tb2; |
44 |
< |
double angle; |
45 |
< |
double press[9]; |
46 |
< |
const double p_convert = 1.63882576e8; |
35 |
> |
for(i = 0; i < 3; i++){ |
36 |
> |
for (j = 0; j < 3; j++){ |
37 |
|
|
38 |
< |
tt2 = tauThermostat * tauThermostat; |
39 |
< |
tb2 = tauBarostat * tauBarostat; |
38 |
> |
eta[i][j] = 0.0; |
39 |
> |
oldEta[i][j] = 0.0; |
40 |
> |
} |
41 |
> |
} |
42 |
|
|
51 |
– |
instaTemp = tStats->getTemperature(); |
52 |
– |
tStats->getPressureTensor(press); |
43 |
|
|
44 |
< |
for (i=0; i < 9; i++) press[i] *= p_convert; |
44 |
> |
if( theInfo->useInitXSstate ){ |
45 |
> |
// retrieve eta array from simInfo if it exists |
46 |
> |
data = info->getProperty(ETAVALUE_ID); |
47 |
> |
if(data){ |
48 |
> |
etaValue = dynamic_cast<DoubleArrayData*>(data); |
49 |
> |
|
50 |
> |
if(etaValue){ |
51 |
> |
etaArray = etaValue->getData(); |
52 |
> |
|
53 |
> |
for(i = 0; i < 3; i++){ |
54 |
> |
for (j = 0; j < 3; j++){ |
55 |
> |
eta[i][j] = etaArray[3*i+j]; |
56 |
> |
oldEta[i][j] = eta[i][j]; |
57 |
> |
} |
58 |
> |
} |
59 |
> |
} |
60 |
> |
} |
61 |
> |
} |
62 |
|
|
63 |
< |
instaVol = tStats->getVolume(); |
57 |
< |
|
58 |
< |
// first evolve chi a half step |
59 |
< |
|
60 |
< |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
61 |
< |
|
62 |
< |
eta[0] += dt2 * instaVol * (press[0] - targetPressure) / (NkBT*tb2); |
63 |
< |
eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2); |
64 |
< |
eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2); |
65 |
< |
eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2); |
66 |
< |
eta[4] += dt2 * instaVol * (press[4] - targetPressure) / (NkBT*tb2); |
67 |
< |
eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2); |
68 |
< |
eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2); |
69 |
< |
eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2); |
70 |
< |
eta[8] += dt2 * instaVol * (press[8] - targetPressure) / (NkBT*tb2); |
71 |
< |
|
72 |
< |
for( i=0; i<nAtoms; i++ ){ |
73 |
< |
atomIndex = i * 3; |
74 |
< |
aMatIndex = i * 9; |
75 |
< |
|
76 |
< |
// velocity half step |
77 |
< |
|
78 |
< |
vx = vel[atomIndex]; |
79 |
< |
vy = vel[atomIndex+1]; |
80 |
< |
vz = vel[atomIndex+2]; |
81 |
< |
|
82 |
< |
scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz; |
83 |
< |
scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz; |
84 |
< |
scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz; |
85 |
< |
|
86 |
< |
vx += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - scx); |
87 |
< |
vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy); |
88 |
< |
vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz); |
63 |
> |
} |
64 |
|
|
65 |
< |
vel[atomIndex] = vx; |
91 |
< |
vel[atomIndex+1] = vy; |
92 |
< |
vel[atomIndex+2] = vz; |
65 |
> |
template<typename T> NPTf<T>::~NPTf() { |
66 |
|
|
67 |
< |
// position whole step |
67 |
> |
// empty for now |
68 |
> |
} |
69 |
|
|
70 |
< |
rj[0] = pos[atomIndex]; |
97 |
< |
rj[1] = pos[atomIndex+1]; |
98 |
< |
rj[2] = pos[atomIndex+2]; |
70 |
> |
template<typename T> void NPTf<T>::resetIntegrator() { |
71 |
|
|
72 |
< |
info->wrapVector(rj); |
72 |
> |
int i, j; |
73 |
|
|
74 |
< |
scx = eta[0]*rj[0] + eta[1]*rj[1] + eta[2]*rj[2]; |
75 |
< |
scy = eta[3]*rj[0] + eta[4]*rj[1] + eta[5]*rj[2]; |
76 |
< |
scz = eta[6]*rj[0] + eta[7]*rj[1] + eta[8]*rj[2]; |
74 |
> |
for(i = 0; i < 3; i++) |
75 |
> |
for (j = 0; j < 3; j++) |
76 |
> |
eta[i][j] = 0.0; |
77 |
|
|
78 |
< |
pos[atomIndex] += dt * (vel[atomIndex] + scx); |
79 |
< |
pos[atomIndex+1] += dt * (vel[atomIndex+1] + scy); |
108 |
< |
pos[atomIndex+2] += dt * (vel[atomIndex+2] + scz); |
109 |
< |
|
110 |
< |
if( atoms[i]->isDirectional() ){ |
78 |
> |
T::resetIntegrator(); |
79 |
> |
} |
80 |
|
|
81 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
113 |
< |
|
114 |
< |
// get and convert the torque to body frame |
115 |
< |
|
116 |
< |
Tb[0] = dAtom->getTx(); |
117 |
< |
Tb[1] = dAtom->getTy(); |
118 |
< |
Tb[2] = dAtom->getTz(); |
119 |
< |
|
120 |
< |
dAtom->lab2Body( Tb ); |
121 |
< |
|
122 |
< |
// get the angular momentum, and propagate a half step |
81 |
> |
template<typename T> void NPTf<T>::evolveEtaA() { |
82 |
|
|
83 |
< |
ji[0] = dAtom->getJx(); |
84 |
< |
ji[1] = dAtom->getJy(); |
85 |
< |
ji[2] = dAtom->getJz(); |
86 |
< |
|
87 |
< |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
88 |
< |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
89 |
< |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
90 |
< |
|
91 |
< |
// use the angular velocities to propagate the rotation matrix a |
133 |
< |
// full time step |
134 |
< |
|
135 |
< |
// rotate about the x-axis |
136 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
137 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
138 |
< |
|
139 |
< |
// rotate about the y-axis |
140 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
141 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
142 |
< |
|
143 |
< |
// rotate about the z-axis |
144 |
< |
angle = dt * ji[2] / dAtom->getIzz(); |
145 |
< |
this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); |
146 |
< |
|
147 |
< |
// rotate about the y-axis |
148 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
149 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
150 |
< |
|
151 |
< |
// rotate about the x-axis |
152 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
153 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
154 |
< |
|
155 |
< |
dAtom->setJx( ji[0] ); |
156 |
< |
dAtom->setJy( ji[1] ); |
157 |
< |
dAtom->setJz( ji[2] ); |
83 |
> |
int i, j; |
84 |
> |
|
85 |
> |
for(i = 0; i < 3; i ++){ |
86 |
> |
for(j = 0; j < 3; j++){ |
87 |
> |
if( i == j) |
88 |
> |
eta[i][j] += dt2 * instaVol * |
89 |
> |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
90 |
> |
else |
91 |
> |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
92 |
|
} |
159 |
– |
|
93 |
|
} |
94 |
|
|
95 |
< |
// Scale the box after all the positions have been moved: |
96 |
< |
|
95 |
> |
for(i = 0; i < 3; i++) |
96 |
> |
for (j = 0; j < 3; j++) |
97 |
> |
oldEta[i][j] = eta[i][j]; |
98 |
> |
} |
99 |
|
|
100 |
+ |
template<typename T> void NPTf<T>::evolveEtaB() { |
101 |
|
|
102 |
< |
// Use a taylor expansion for eta products |
167 |
< |
|
168 |
< |
info->getBoxM(hm); |
169 |
< |
|
102 |
> |
int i,j; |
103 |
|
|
104 |
+ |
for(i = 0; i < 3; i++) |
105 |
+ |
for (j = 0; j < 3; j++) |
106 |
+ |
prevEta[i][j] = eta[i][j]; |
107 |
|
|
108 |
+ |
for(i = 0; i < 3; i ++){ |
109 |
+ |
for(j = 0; j < 3; j++){ |
110 |
+ |
if( i == j) { |
111 |
+ |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
112 |
+ |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
113 |
+ |
} else { |
114 |
+ |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2); |
115 |
+ |
} |
116 |
+ |
} |
117 |
+ |
} |
118 |
+ |
} |
119 |
|
|
120 |
+ |
template<typename T> void NPTf<T>::calcVelScale(void){ |
121 |
+ |
int i,j; |
122 |
|
|
123 |
+ |
for (i = 0; i < 3; i++ ) { |
124 |
+ |
for (j = 0; j < 3; j++ ) { |
125 |
+ |
vScale[i][j] = eta[i][j]; |
126 |
|
|
127 |
< |
info->scaleBox(exp(dt*eta)); |
127 |
> |
if (i == j) { |
128 |
> |
vScale[i][j] += chi; |
129 |
> |
} |
130 |
> |
} |
131 |
> |
} |
132 |
> |
} |
133 |
|
|
134 |
+ |
template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) { |
135 |
+ |
|
136 |
+ |
info->matVecMul3( vScale, vel, sc ); |
137 |
+ |
} |
138 |
|
|
139 |
+ |
template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){ |
140 |
+ |
int j; |
141 |
+ |
double myVel[3]; |
142 |
+ |
double vScale[3][3]; |
143 |
+ |
|
144 |
+ |
for (j = 0; j < 3; j++) |
145 |
+ |
myVel[j] = oldVel[3*index + j]; |
146 |
+ |
|
147 |
+ |
info->matVecMul3( vScale, myVel, sc ); |
148 |
|
} |
149 |
|
|
150 |
< |
void NPTi::moveB( void ){ |
150 |
> |
template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3], |
151 |
> |
int index, double sc[3]){ |
152 |
> |
int j; |
153 |
> |
double rj[3]; |
154 |
> |
|
155 |
> |
for(j=0; j<3; j++) |
156 |
> |
rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; |
157 |
> |
|
158 |
> |
info->matVecMul3( eta, rj, sc ); |
159 |
> |
} |
160 |
> |
|
161 |
> |
template<typename T> void NPTf<T>::scaleSimBox( void ){ |
162 |
> |
|
163 |
|
int i,j,k; |
164 |
< |
int atomIndex; |
165 |
< |
DirectionalAtom* dAtom; |
166 |
< |
double Tb[3]; |
167 |
< |
double ji[3]; |
186 |
< |
double instaTemp, instaPress, instaVol; |
187 |
< |
double tt2, tb2; |
188 |
< |
|
189 |
< |
tt2 = tauThermostat * tauThermostat; |
190 |
< |
tb2 = tauBarostat * tauBarostat; |
164 |
> |
double scaleMat[3][3]; |
165 |
> |
double eta2ij; |
166 |
> |
double bigScale, smallScale, offDiagMax; |
167 |
> |
double hm[3][3], hmnew[3][3]; |
168 |
|
|
192 |
– |
instaTemp = tStats->getTemperature(); |
193 |
– |
instaPress = tStats->getPressure(); |
194 |
– |
instaVol = tStats->getVolume(); |
169 |
|
|
170 |
< |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
171 |
< |
eta += dt2 * ( instaVol * (instaPress - targetPressure) / (NkBT*tb2)); |
172 |
< |
|
173 |
< |
for( i=0; i<nAtoms; i++ ){ |
174 |
< |
atomIndex = i * 3; |
175 |
< |
|
176 |
< |
// velocity half step |
177 |
< |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
178 |
< |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
179 |
< |
vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert |
180 |
< |
- vel[j]*(chi+eta)); |
181 |
< |
|
182 |
< |
if( atoms[i]->isDirectional() ){ |
183 |
< |
|
184 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
185 |
< |
|
186 |
< |
// get and convert the torque to body frame |
187 |
< |
|
188 |
< |
Tb[0] = dAtom->getTx(); |
189 |
< |
Tb[1] = dAtom->getTy(); |
190 |
< |
Tb[2] = dAtom->getTz(); |
191 |
< |
|
192 |
< |
dAtom->lab2Body( Tb ); |
193 |
< |
|
194 |
< |
// get the angular momentum, and complete the angular momentum |
195 |
< |
// half step |
196 |
< |
|
197 |
< |
ji[0] = dAtom->getJx(); |
198 |
< |
ji[1] = dAtom->getJy(); |
199 |
< |
ji[2] = dAtom->getJz(); |
226 |
< |
|
227 |
< |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
228 |
< |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
229 |
< |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
230 |
< |
|
231 |
< |
dAtom->setJx( ji[0] ); |
232 |
< |
dAtom->setJy( ji[1] ); |
233 |
< |
dAtom->setJz( ji[2] ); |
170 |
> |
|
171 |
> |
// Scale the box after all the positions have been moved: |
172 |
> |
|
173 |
> |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
174 |
> |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
175 |
> |
|
176 |
> |
bigScale = 1.0; |
177 |
> |
smallScale = 1.0; |
178 |
> |
offDiagMax = 0.0; |
179 |
> |
|
180 |
> |
for(i=0; i<3; i++){ |
181 |
> |
for(j=0; j<3; j++){ |
182 |
> |
|
183 |
> |
// Calculate the matrix Product of the eta array (we only need |
184 |
> |
// the ij element right now): |
185 |
> |
|
186 |
> |
eta2ij = 0.0; |
187 |
> |
for(k=0; k<3; k++){ |
188 |
> |
eta2ij += eta[i][k] * eta[k][j]; |
189 |
> |
} |
190 |
> |
|
191 |
> |
scaleMat[i][j] = 0.0; |
192 |
> |
// identity matrix (see above): |
193 |
> |
if (i == j) scaleMat[i][j] = 1.0; |
194 |
> |
// Taylor expansion for the exponential truncated at second order: |
195 |
> |
scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij; |
196 |
> |
|
197 |
> |
if (i != j) |
198 |
> |
if (fabs(scaleMat[i][j]) > offDiagMax) |
199 |
> |
offDiagMax = fabs(scaleMat[i][j]); |
200 |
|
} |
235 |
– |
} |
236 |
– |
} |
201 |
|
|
202 |
< |
int NPTi::readyCheck() { |
203 |
< |
|
240 |
< |
// First check to see if we have a target temperature. |
241 |
< |
// Not having one is fatal. |
242 |
< |
|
243 |
< |
if (!have_target_temp) { |
244 |
< |
sprintf( painCave.errMsg, |
245 |
< |
"NPTi error: You can't use the NPTi integrator\n" |
246 |
< |
" without a targetTemp!\n" |
247 |
< |
); |
248 |
< |
painCave.isFatal = 1; |
249 |
< |
simError(); |
250 |
< |
return -1; |
202 |
> |
if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; |
203 |
> |
if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; |
204 |
|
} |
205 |
|
|
206 |
< |
if (!have_target_pressure) { |
206 |
> |
if ((bigScale > 1.01) || (smallScale < 0.99)) { |
207 |
|
sprintf( painCave.errMsg, |
208 |
< |
"NPTi error: You can't use the NPTi integrator\n" |
209 |
< |
" without a targetPressure!\n" |
210 |
< |
); |
208 |
> |
"NPTf error: Attempting a Box scaling of more than 1 percent.\n" |
209 |
> |
" Check your tauBarostat, as it is probably too small!\n\n" |
210 |
> |
" scaleMat = [%lf\t%lf\t%lf]\n" |
211 |
> |
" [%lf\t%lf\t%lf]\n" |
212 |
> |
" [%lf\t%lf\t%lf]\n", |
213 |
> |
scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
214 |
> |
scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
215 |
> |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
216 |
|
painCave.isFatal = 1; |
217 |
|
simError(); |
218 |
< |
return -1; |
261 |
< |
} |
262 |
< |
|
263 |
< |
// We must set tauThermostat. |
264 |
< |
|
265 |
< |
if (!have_tau_thermostat) { |
218 |
> |
} else if (offDiagMax > 0.01) { |
219 |
|
sprintf( painCave.errMsg, |
220 |
< |
"NPTi error: If you use the NPTi\n" |
221 |
< |
" integrator, you must set tauThermostat.\n"); |
220 |
> |
"NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n" |
221 |
> |
" Check your tauBarostat, as it is probably too small!\n\n" |
222 |
> |
" scaleMat = [%lf\t%lf\t%lf]\n" |
223 |
> |
" [%lf\t%lf\t%lf]\n" |
224 |
> |
" [%lf\t%lf\t%lf]\n", |
225 |
> |
scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
226 |
> |
scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
227 |
> |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
228 |
|
painCave.isFatal = 1; |
229 |
|
simError(); |
230 |
< |
return -1; |
231 |
< |
} |
230 |
> |
} else { |
231 |
> |
info->getBoxM(hm); |
232 |
> |
info->matMul3(hm, scaleMat, hmnew); |
233 |
> |
info->setBoxM(hmnew); |
234 |
> |
} |
235 |
> |
} |
236 |
|
|
237 |
< |
// We must set tauBarostat. |
238 |
< |
|
239 |
< |
if (!have_tau_barostat) { |
277 |
< |
sprintf( painCave.errMsg, |
278 |
< |
"NPTi error: If you use the NPTi\n" |
279 |
< |
" integrator, you must set tauBarostat.\n"); |
280 |
< |
painCave.isFatal = 1; |
281 |
< |
simError(); |
282 |
< |
return -1; |
283 |
< |
} |
237 |
> |
template<typename T> bool NPTf<T>::etaConverged() { |
238 |
> |
int i; |
239 |
> |
double diffEta, sumEta; |
240 |
|
|
241 |
< |
// We need NkBT a lot, so just set it here: |
241 |
> |
sumEta = 0; |
242 |
> |
for(i = 0; i < 3; i++) |
243 |
> |
sumEta += pow(prevEta[i][i] - eta[i][i], 2); |
244 |
|
|
245 |
< |
NkBT = (double)info->ndf * kB * targetTemp; |
245 |
> |
diffEta = sqrt( sumEta / 3.0 ); |
246 |
|
|
247 |
< |
return 1; |
247 |
> |
return ( diffEta <= etaTolerance ); |
248 |
|
} |
249 |
+ |
|
250 |
+ |
template<typename T> double NPTf<T>::getConservedQuantity(void){ |
251 |
+ |
|
252 |
+ |
double conservedQuantity; |
253 |
+ |
double totalEnergy; |
254 |
+ |
double thermostat_kinetic; |
255 |
+ |
double thermostat_potential; |
256 |
+ |
double barostat_kinetic; |
257 |
+ |
double barostat_potential; |
258 |
+ |
double trEta; |
259 |
+ |
double a[3][3], b[3][3]; |
260 |
+ |
|
261 |
+ |
totalEnergy = tStats->getTotalE(); |
262 |
+ |
|
263 |
+ |
thermostat_kinetic = fkBT * tt2 * chi * chi / |
264 |
+ |
(2.0 * eConvert); |
265 |
+ |
|
266 |
+ |
thermostat_potential = fkBT* integralOfChidt / eConvert; |
267 |
+ |
|
268 |
+ |
info->transposeMat3(eta, a); |
269 |
+ |
info->matMul3(a, eta, b); |
270 |
+ |
trEta = info->matTrace3(b); |
271 |
+ |
|
272 |
+ |
barostat_kinetic = NkBT * tb2 * trEta / |
273 |
+ |
(2.0 * eConvert); |
274 |
+ |
|
275 |
+ |
barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / |
276 |
+ |
eConvert; |
277 |
+ |
|
278 |
+ |
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
279 |
+ |
barostat_kinetic + barostat_potential; |
280 |
+ |
|
281 |
+ |
return conservedQuantity; |
282 |
+ |
|
283 |
+ |
} |
284 |
+ |
|
285 |
+ |
template<typename T> string NPTf<T>::getAdditionalParameters(void){ |
286 |
+ |
string parameters; |
287 |
+ |
const int BUFFERSIZE = 2000; // size of the read buffer |
288 |
+ |
char buffer[BUFFERSIZE]; |
289 |
+ |
|
290 |
+ |
sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt); |
291 |
+ |
parameters += buffer; |
292 |
+ |
|
293 |
+ |
for(int i = 0; i < 3; i++){ |
294 |
+ |
sprintf(buffer,"\t%G\t%G\t%G;", eta[i][0], eta[i][1], eta[i][2]); |
295 |
+ |
parameters += buffer; |
296 |
+ |
} |
297 |
+ |
|
298 |
+ |
return parameters; |
299 |
+ |
|
300 |
+ |
} |