1 |
+ |
#include <math.h> |
2 |
|
#include "Atom.hpp" |
3 |
|
#include "SRI.hpp" |
4 |
|
#include "AbstractClasses.hpp" |
7 |
|
#include "Thermo.hpp" |
8 |
|
#include "ReadWrite.hpp" |
9 |
|
#include "Integrator.hpp" |
10 |
< |
#include "simError.h" |
10 |
> |
#include "simError.h" |
11 |
|
|
12 |
+ |
#ifdef IS_MPI |
13 |
+ |
#include "mpiSimulation.hpp" |
14 |
+ |
#endif |
15 |
|
|
16 |
|
// Basic non-isotropic thermostating and barostating via the Melchionna |
17 |
|
// modification of the Hoover algorithm: |
18 |
|
// |
19 |
|
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
20 |
< |
// Molec. Phys., 78, 533. |
20 |
> |
// Molec. Phys., 78, 533. |
21 |
|
// |
22 |
|
// and |
23 |
< |
// |
23 |
> |
// |
24 |
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
25 |
|
|
26 |
< |
NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
27 |
< |
Integrator( theInfo, the_ff ) |
26 |
> |
template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
27 |
> |
T( theInfo, the_ff ) |
28 |
|
{ |
29 |
+ |
GenericData* data; |
30 |
+ |
DoubleArrayData * etaValue; |
31 |
+ |
vector<double> etaArray; |
32 |
+ |
int i,j; |
33 |
+ |
|
34 |
+ |
for(i = 0; i < 3; i++){ |
35 |
+ |
for (j = 0; j < 3; j++){ |
36 |
+ |
|
37 |
+ |
eta[i][j] = 0.0; |
38 |
+ |
oldEta[i][j] = 0.0; |
39 |
+ |
} |
40 |
+ |
} |
41 |
+ |
|
42 |
+ |
|
43 |
+ |
if( theInfo->useInitXSstate ){ |
44 |
+ |
// retrieve eta array from simInfo if it exists |
45 |
+ |
data = info->getProperty(ETAVALUE_ID); |
46 |
+ |
if(data){ |
47 |
+ |
etaValue = dynamic_cast<DoubleArrayData*>(data); |
48 |
+ |
|
49 |
+ |
if(etaValue){ |
50 |
+ |
etaArray = etaValue->getData(); |
51 |
+ |
|
52 |
+ |
for(i = 0; i < 3; i++){ |
53 |
+ |
for (j = 0; j < 3; j++){ |
54 |
+ |
eta[i][j] = etaArray[3*i+j]; |
55 |
+ |
oldEta[i][j] = eta[i][j]; |
56 |
+ |
} |
57 |
+ |
} |
58 |
+ |
} |
59 |
+ |
} |
60 |
+ |
} |
61 |
+ |
|
62 |
+ |
} |
63 |
+ |
|
64 |
+ |
template<typename T> NPTf<T>::~NPTf() { |
65 |
+ |
|
66 |
+ |
// empty for now |
67 |
+ |
} |
68 |
+ |
|
69 |
+ |
template<typename T> void NPTf<T>::resetIntegrator() { |
70 |
+ |
|
71 |
|
int i, j; |
26 |
– |
chi = 0.0; |
72 |
|
|
73 |
< |
for(i = 0; i < 3; i++) |
74 |
< |
for (j = 0; j < 3; j_++) |
73 |
> |
for(i = 0; i < 3; i++) |
74 |
> |
for (j = 0; j < 3; j++) |
75 |
|
eta[i][j] = 0.0; |
76 |
|
|
77 |
< |
have_tau_thermostat = 0; |
33 |
< |
have_tau_barostat = 0; |
34 |
< |
have_target_temp = 0; |
35 |
< |
have_target_pressure = 0; |
77 |
> |
T::resetIntegrator(); |
78 |
|
} |
79 |
|
|
80 |
< |
void NPTf::moveA() { |
39 |
< |
|
40 |
< |
int i,j,k; |
41 |
< |
int atomIndex, aMatIndex; |
42 |
< |
DirectionalAtom* dAtom; |
43 |
< |
double Tb[3]; |
44 |
< |
double ji[3]; |
45 |
< |
double ri[3], vi[3], sc[3]; |
46 |
< |
double instaTemp, instaVol; |
47 |
< |
double tt2, tb2, eta2ij; |
48 |
< |
double angle; |
49 |
< |
double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3]; |
80 |
> |
template<typename T> void NPTf<T>::evolveEtaA() { |
81 |
|
|
82 |
< |
tt2 = tauThermostat * tauThermostat; |
52 |
< |
tb2 = tauBarostat * tauBarostat; |
82 |
> |
int i, j; |
83 |
|
|
84 |
< |
instaTemp = tStats->getTemperature(); |
85 |
< |
tStats->getPressureTensor(press); |
86 |
< |
instaVol = tStats->getVolume(); |
87 |
< |
|
88 |
< |
// first evolve chi a half step |
89 |
< |
|
90 |
< |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
84 |
> |
for(i = 0; i < 3; i ++){ |
85 |
> |
for(j = 0; j < 3; j++){ |
86 |
> |
if( i == j) |
87 |
> |
eta[i][j] += dt2 * instaVol * |
88 |
> |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
89 |
> |
else |
90 |
> |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
91 |
> |
} |
92 |
> |
} |
93 |
|
|
94 |
+ |
for(i = 0; i < 3; i++) |
95 |
+ |
for (j = 0; j < 3; j++) |
96 |
+ |
oldEta[i][j] = eta[i][j]; |
97 |
+ |
} |
98 |
+ |
|
99 |
+ |
template<typename T> void NPTf<T>::evolveEtaB() { |
100 |
+ |
|
101 |
+ |
int i,j; |
102 |
+ |
|
103 |
+ |
for(i = 0; i < 3; i++) |
104 |
+ |
for (j = 0; j < 3; j++) |
105 |
+ |
prevEta[i][j] = eta[i][j]; |
106 |
+ |
|
107 |
+ |
for(i = 0; i < 3; i ++){ |
108 |
+ |
for(j = 0; j < 3; j++){ |
109 |
+ |
if( i == j) { |
110 |
+ |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
111 |
+ |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
112 |
+ |
} else { |
113 |
+ |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2); |
114 |
+ |
} |
115 |
+ |
} |
116 |
+ |
} |
117 |
+ |
} |
118 |
+ |
|
119 |
+ |
template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) { |
120 |
+ |
int i,j; |
121 |
+ |
double vScale[3][3]; |
122 |
+ |
|
123 |
|
for (i = 0; i < 3; i++ ) { |
124 |
|
for (j = 0; j < 3; j++ ) { |
125 |
+ |
vScale[i][j] = eta[i][j]; |
126 |
+ |
|
127 |
|
if (i == j) { |
128 |
+ |
vScale[i][j] += chi; |
129 |
+ |
} |
130 |
+ |
} |
131 |
+ |
} |
132 |
|
|
133 |
< |
eta[i][j] += dt2 * instaVol * |
134 |
< |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
133 |
> |
info->matVecMul3( vScale, vel, sc ); |
134 |
> |
} |
135 |
|
|
136 |
< |
vScale[i][j] = eta[i][j] + chi; |
137 |
< |
|
138 |
< |
} else { |
139 |
< |
|
73 |
< |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
136 |
> |
template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){ |
137 |
> |
int i,j; |
138 |
> |
double myVel[3]; |
139 |
> |
double vScale[3][3]; |
140 |
|
|
141 |
< |
vScale[i][j] = eta[i][j]; |
142 |
< |
|
141 |
> |
for (i = 0; i < 3; i++ ) { |
142 |
> |
for (j = 0; j < 3; j++ ) { |
143 |
> |
vScale[i][j] = eta[i][j]; |
144 |
> |
|
145 |
> |
if (i == j) { |
146 |
> |
vScale[i][j] += chi; |
147 |
|
} |
148 |
|
} |
149 |
|
} |
150 |
|
|
151 |
< |
for( i=0; i<nAtoms; i++ ){ |
152 |
< |
atomIndex = i * 3; |
83 |
< |
aMatIndex = i * 9; |
84 |
< |
|
85 |
< |
// velocity half step |
86 |
< |
|
87 |
< |
vi[0] = vel[atomIndex]; |
88 |
< |
vi[1] = vel[atomIndex+1]; |
89 |
< |
vi[2] = vel[atomIndex+2]; |
90 |
< |
|
91 |
< |
info->matVecMul3( vScale, vi, sc ); |
92 |
< |
|
93 |
< |
vi[0] += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - sc[0]); |
94 |
< |
vi[1] += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - sc[1]); |
95 |
< |
vi[2] += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - sc[2]); |
151 |
> |
for (j = 0; j < 3; j++) |
152 |
> |
myVel[j] = oldVel[3*index + j]; |
153 |
|
|
154 |
< |
vel[atomIndex] = vi[0] |
155 |
< |
vel[atomIndex+1] = vi[1]; |
99 |
< |
vel[atomIndex+2] = vi[2]; |
154 |
> |
info->matVecMul3( vScale, myVel, sc ); |
155 |
> |
} |
156 |
|
|
157 |
< |
// position whole step |
157 |
> |
template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3], |
158 |
> |
int index, double sc[3]){ |
159 |
> |
int j; |
160 |
> |
double rj[3]; |
161 |
|
|
162 |
< |
ri[0] = pos[atomIndex]; |
163 |
< |
ri[1] = pos[atomIndex+1]; |
105 |
< |
ri[2] = pos[atomIndex+2]; |
162 |
> |
for(j=0; j<3; j++) |
163 |
> |
rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; |
164 |
|
|
165 |
< |
info->wrapVector(ri); |
165 |
> |
info->matVecMul3( eta, rj, sc ); |
166 |
> |
} |
167 |
|
|
168 |
< |
info->matVecMul3( eta, ri, sc ); |
168 |
> |
template<typename T> void NPTf<T>::scaleSimBox( void ){ |
169 |
|
|
170 |
< |
pos[atomIndex] += dt * (vel[atomIndex] + sc[0]); |
171 |
< |
pos[atomIndex+1] += dt * (vel[atomIndex+1] + sc[1]); |
172 |
< |
pos[atomIndex+2] += dt * (vel[atomIndex+2] + sc[2]); |
173 |
< |
|
174 |
< |
if( atoms[i]->isDirectional() ){ |
170 |
> |
int i,j,k; |
171 |
> |
double scaleMat[3][3]; |
172 |
> |
double eta2ij; |
173 |
> |
double bigScale, smallScale, offDiagMax; |
174 |
> |
double hm[3][3], hmnew[3][3]; |
175 |
|
|
117 |
– |
dAtom = (DirectionalAtom *)atoms[i]; |
118 |
– |
|
119 |
– |
// get and convert the torque to body frame |
120 |
– |
|
121 |
– |
Tb[0] = dAtom->getTx(); |
122 |
– |
Tb[1] = dAtom->getTy(); |
123 |
– |
Tb[2] = dAtom->getTz(); |
124 |
– |
|
125 |
– |
dAtom->lab2Body( Tb ); |
126 |
– |
|
127 |
– |
// get the angular momentum, and propagate a half step |
176 |
|
|
129 |
– |
ji[0] = dAtom->getJx(); |
130 |
– |
ji[1] = dAtom->getJy(); |
131 |
– |
ji[2] = dAtom->getJz(); |
132 |
– |
|
133 |
– |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
134 |
– |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
135 |
– |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
136 |
– |
|
137 |
– |
// use the angular velocities to propagate the rotation matrix a |
138 |
– |
// full time step |
139 |
– |
|
140 |
– |
// rotate about the x-axis |
141 |
– |
angle = dt2 * ji[0] / dAtom->getIxx(); |
142 |
– |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
143 |
– |
|
144 |
– |
// rotate about the y-axis |
145 |
– |
angle = dt2 * ji[1] / dAtom->getIyy(); |
146 |
– |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
147 |
– |
|
148 |
– |
// rotate about the z-axis |
149 |
– |
angle = dt * ji[2] / dAtom->getIzz(); |
150 |
– |
this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); |
151 |
– |
|
152 |
– |
// rotate about the y-axis |
153 |
– |
angle = dt2 * ji[1] / dAtom->getIyy(); |
154 |
– |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
155 |
– |
|
156 |
– |
// rotate about the x-axis |
157 |
– |
angle = dt2 * ji[0] / dAtom->getIxx(); |
158 |
– |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
159 |
– |
|
160 |
– |
dAtom->setJx( ji[0] ); |
161 |
– |
dAtom->setJy( ji[1] ); |
162 |
– |
dAtom->setJz( ji[2] ); |
163 |
– |
} |
164 |
– |
|
165 |
– |
} |
177 |
|
|
178 |
|
// Scale the box after all the positions have been moved: |
179 |
|
|
180 |
|
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
181 |
|
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
182 |
|
|
183 |
+ |
bigScale = 1.0; |
184 |
+ |
smallScale = 1.0; |
185 |
+ |
offDiagMax = 0.0; |
186 |
|
|
187 |
|
for(i=0; i<3; i++){ |
188 |
|
for(j=0; j<3; j++){ |
194 |
|
for(k=0; k<3; k++){ |
195 |
|
eta2ij += eta[i][k] * eta[k][j]; |
196 |
|
} |
197 |
< |
|
197 |
> |
|
198 |
|
scaleMat[i][j] = 0.0; |
199 |
|
// identity matrix (see above): |
200 |
|
if (i == j) scaleMat[i][j] = 1.0; |
201 |
|
// Taylor expansion for the exponential truncated at second order: |
202 |
|
scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij; |
203 |
|
|
204 |
+ |
if (i != j) |
205 |
+ |
if (fabs(scaleMat[i][j]) > offDiagMax) |
206 |
+ |
offDiagMax = fabs(scaleMat[i][j]); |
207 |
|
} |
208 |
+ |
|
209 |
+ |
if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; |
210 |
+ |
if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; |
211 |
|
} |
212 |
< |
|
213 |
< |
info->getBoxM(hm); |
214 |
< |
info->matMul3(hm, scaleMat, hmnew); |
215 |
< |
info->setBoxM(hmnew); |
216 |
< |
|
212 |
> |
|
213 |
> |
if ((bigScale > 1.01) || (smallScale < 0.99)) { |
214 |
> |
sprintf( painCave.errMsg, |
215 |
> |
"NPTf error: Attempting a Box scaling of more than 1 percent.\n" |
216 |
> |
" Check your tauBarostat, as it is probably too small!\n\n" |
217 |
> |
" scaleMat = [%lf\t%lf\t%lf]\n" |
218 |
> |
" [%lf\t%lf\t%lf]\n" |
219 |
> |
" [%lf\t%lf\t%lf]\n", |
220 |
> |
scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
221 |
> |
scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
222 |
> |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
223 |
> |
painCave.isFatal = 1; |
224 |
> |
simError(); |
225 |
> |
} else if (offDiagMax > 0.01) { |
226 |
> |
sprintf( painCave.errMsg, |
227 |
> |
"NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n" |
228 |
> |
" Check your tauBarostat, as it is probably too small!\n\n" |
229 |
> |
" scaleMat = [%lf\t%lf\t%lf]\n" |
230 |
> |
" [%lf\t%lf\t%lf]\n" |
231 |
> |
" [%lf\t%lf\t%lf]\n", |
232 |
> |
scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
233 |
> |
scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
234 |
> |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
235 |
> |
painCave.isFatal = 1; |
236 |
> |
simError(); |
237 |
> |
} else { |
238 |
> |
info->getBoxM(hm); |
239 |
> |
info->matMul3(hm, scaleMat, hmnew); |
240 |
> |
info->setBoxM(hmnew); |
241 |
> |
} |
242 |
|
} |
243 |
|
|
244 |
< |
void NPTf::moveB( void ){ |
245 |
< |
int i,j, k; |
246 |
< |
int atomIndex; |
202 |
< |
DirectionalAtom* dAtom; |
203 |
< |
double Tb[3]; |
204 |
< |
double ji[3]; |
205 |
< |
double vi[3], sc[3]; |
206 |
< |
double instaTemp, instaVol; |
207 |
< |
double tt2, tb2; |
208 |
< |
double press[3][3], vScale[3][3]; |
209 |
< |
|
210 |
< |
tt2 = tauThermostat * tauThermostat; |
211 |
< |
tb2 = tauBarostat * tauBarostat; |
244 |
> |
template<typename T> bool NPTf<T>::etaConverged() { |
245 |
> |
int i; |
246 |
> |
double diffEta, sumEta; |
247 |
|
|
248 |
< |
instaTemp = tStats->getTemperature(); |
249 |
< |
tStats->getPressureTensor(press); |
250 |
< |
instaVol = tStats->getVolume(); |
216 |
< |
|
217 |
< |
// first evolve chi a half step |
218 |
< |
|
219 |
< |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
220 |
< |
|
221 |
< |
for (i = 0; i < 3; i++ ) { |
222 |
< |
for (j = 0; j < 3; j++ ) { |
223 |
< |
if (i == j) { |
248 |
> |
sumEta = 0; |
249 |
> |
for(i = 0; i < 3; i++) |
250 |
> |
sumEta += pow(prevEta[i][i] - eta[i][i], 2); |
251 |
|
|
252 |
< |
eta[i][j] += dt2 * instaVol * |
226 |
< |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
252 |
> |
diffEta = sqrt( sumEta / 3.0 ); |
253 |
|
|
254 |
< |
vScale[i][j] = eta[i][j] + chi; |
255 |
< |
|
230 |
< |
} else { |
231 |
< |
|
232 |
< |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
254 |
> |
return ( diffEta <= etaTolerance ); |
255 |
> |
} |
256 |
|
|
257 |
< |
vScale[i][j] = eta[i][j]; |
235 |
< |
|
236 |
< |
} |
237 |
< |
} |
238 |
< |
} |
257 |
> |
template<typename T> double NPTf<T>::getConservedQuantity(void){ |
258 |
|
|
259 |
< |
for( i=0; i<nAtoms; i++ ){ |
260 |
< |
atomIndex = i * 3; |
259 |
> |
double conservedQuantity; |
260 |
> |
double totalEnergy; |
261 |
> |
double thermostat_kinetic; |
262 |
> |
double thermostat_potential; |
263 |
> |
double barostat_kinetic; |
264 |
> |
double barostat_potential; |
265 |
> |
double trEta; |
266 |
> |
double a[3][3], b[3][3]; |
267 |
|
|
268 |
< |
// velocity half step |
244 |
< |
|
245 |
< |
vi[0] = vel[atomIndex]; |
246 |
< |
vi[1] = vel[atomIndex+1]; |
247 |
< |
vi[2] = vel[atomIndex+2]; |
248 |
< |
|
249 |
< |
info->matVecMul3( vScale, vi, sc ); |
250 |
< |
|
251 |
< |
vi[0] += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - sc[0]); |
252 |
< |
vi[1] += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - sc[1]); |
253 |
< |
vi[2] += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - sc[2]); |
268 |
> |
totalEnergy = tStats->getTotalE(); |
269 |
|
|
270 |
< |
vel[atomIndex] = vi[0] |
271 |
< |
vel[atomIndex+1] = vi[1]; |
257 |
< |
vel[atomIndex+2] = vi[2]; |
258 |
< |
|
259 |
< |
if( atoms[i]->isDirectional() ){ |
260 |
< |
|
261 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
262 |
< |
|
263 |
< |
// get and convert the torque to body frame |
264 |
< |
|
265 |
< |
Tb[0] = dAtom->getTx(); |
266 |
< |
Tb[1] = dAtom->getTy(); |
267 |
< |
Tb[2] = dAtom->getTz(); |
268 |
< |
|
269 |
< |
dAtom->lab2Body( Tb ); |
270 |
< |
|
271 |
< |
// get the angular momentum, and complete the angular momentum |
272 |
< |
// half step |
273 |
< |
|
274 |
< |
ji[0] = dAtom->getJx(); |
275 |
< |
ji[1] = dAtom->getJy(); |
276 |
< |
ji[2] = dAtom->getJz(); |
277 |
< |
|
278 |
< |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
279 |
< |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
280 |
< |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
281 |
< |
|
282 |
< |
dAtom->setJx( ji[0] ); |
283 |
< |
dAtom->setJy( ji[1] ); |
284 |
< |
dAtom->setJz( ji[2] ); |
285 |
< |
} |
286 |
< |
} |
287 |
< |
} |
270 |
> |
thermostat_kinetic = fkBT * tt2 * chi * chi / |
271 |
> |
(2.0 * eConvert); |
272 |
|
|
273 |
< |
int NPTf::readyCheck() { |
290 |
< |
|
291 |
< |
// First check to see if we have a target temperature. |
292 |
< |
// Not having one is fatal. |
293 |
< |
|
294 |
< |
if (!have_target_temp) { |
295 |
< |
sprintf( painCave.errMsg, |
296 |
< |
"NPTf error: You can't use the NPTf integrator\n" |
297 |
< |
" without a targetTemp!\n" |
298 |
< |
); |
299 |
< |
painCave.isFatal = 1; |
300 |
< |
simError(); |
301 |
< |
return -1; |
302 |
< |
} |
273 |
> |
thermostat_potential = fkBT* integralOfChidt / eConvert; |
274 |
|
|
275 |
< |
if (!have_target_pressure) { |
276 |
< |
sprintf( painCave.errMsg, |
277 |
< |
"NPTf error: You can't use the NPTf integrator\n" |
307 |
< |
" without a targetPressure!\n" |
308 |
< |
); |
309 |
< |
painCave.isFatal = 1; |
310 |
< |
simError(); |
311 |
< |
return -1; |
312 |
< |
} |
313 |
< |
|
314 |
< |
// We must set tauThermostat. |
315 |
< |
|
316 |
< |
if (!have_tau_thermostat) { |
317 |
< |
sprintf( painCave.errMsg, |
318 |
< |
"NPTf error: If you use the NPTf\n" |
319 |
< |
" integrator, you must set tauThermostat.\n"); |
320 |
< |
painCave.isFatal = 1; |
321 |
< |
simError(); |
322 |
< |
return -1; |
323 |
< |
} |
275 |
> |
info->transposeMat3(eta, a); |
276 |
> |
info->matMul3(a, eta, b); |
277 |
> |
trEta = info->matTrace3(b); |
278 |
|
|
279 |
< |
// We must set tauBarostat. |
280 |
< |
|
327 |
< |
if (!have_tau_barostat) { |
328 |
< |
sprintf( painCave.errMsg, |
329 |
< |
"NPTf error: If you use the NPTf\n" |
330 |
< |
" integrator, you must set tauBarostat.\n"); |
331 |
< |
painCave.isFatal = 1; |
332 |
< |
simError(); |
333 |
< |
return -1; |
334 |
< |
} |
279 |
> |
barostat_kinetic = NkBT * tb2 * trEta / |
280 |
> |
(2.0 * eConvert); |
281 |
|
|
282 |
< |
// We need NkBT a lot, so just set it here: |
282 |
> |
barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / |
283 |
> |
eConvert; |
284 |
|
|
285 |
< |
NkBT = (double)info->ndf * kB * targetTemp; |
285 |
> |
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
286 |
> |
barostat_kinetic + barostat_potential; |
287 |
|
|
288 |
< |
return 1; |
288 |
> |
return conservedQuantity; |
289 |
> |
|
290 |
|
} |
291 |
+ |
|
292 |
+ |
template<typename T> string NPTf<T>::getAdditionalParameters(void){ |
293 |
+ |
string parameters; |
294 |
+ |
const int BUFFERSIZE = 2000; // size of the read buffer |
295 |
+ |
char buffer[BUFFERSIZE]; |
296 |
+ |
|
297 |
+ |
sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt); |
298 |
+ |
parameters += buffer; |
299 |
+ |
|
300 |
+ |
for(int i = 0; i < 3; i++){ |
301 |
+ |
sprintf(buffer,"\t%G\t%G\t%G;", eta[i][0], eta[i][1], eta[i][2]); |
302 |
+ |
parameters += buffer; |
303 |
+ |
} |
304 |
+ |
|
305 |
+ |
return parameters; |
306 |
+ |
|
307 |
+ |
} |