| 1 |
|
#include <math.h> |
| 2 |
+ |
|
| 3 |
|
#include "Atom.hpp" |
| 4 |
|
#include "SRI.hpp" |
| 5 |
|
#include "AbstractClasses.hpp" |
| 62 |
|
integralOfChidt = integralOfChidtValue->getData(); |
| 63 |
|
} |
| 64 |
|
|
| 65 |
< |
oldPos = new double[3*nAtoms]; |
| 66 |
< |
oldVel = new double[3*nAtoms]; |
| 67 |
< |
oldJi = new double[3*nAtoms]; |
| 67 |
< |
#ifdef IS_MPI |
| 68 |
< |
Nparticles = mpiSim->getTotAtoms(); |
| 69 |
< |
#else |
| 70 |
< |
Nparticles = theInfo->n_atoms; |
| 71 |
< |
#endif |
| 65 |
> |
oldPos = new double[3*integrableObjects.size()]; |
| 66 |
> |
oldVel = new double[3*integrableObjects.size()]; |
| 67 |
> |
oldJi = new double[3*integrableObjects.size()]; |
| 68 |
|
|
| 69 |
|
} |
| 70 |
|
|
| 78 |
|
|
| 79 |
|
//new version of NPT |
| 80 |
|
int i, j, k; |
| 85 |
– |
DirectionalAtom* dAtom; |
| 81 |
|
double Tb[3], ji[3]; |
| 82 |
|
double mass; |
| 83 |
|
double vel[3], pos[3], frc[3]; |
| 92 |
|
tStats->getCOM(COM); |
| 93 |
|
|
| 94 |
|
//evolve velocity half step |
| 100 |
– |
for( i=0; i<nAtoms; i++ ){ |
| 95 |
|
|
| 96 |
< |
atoms[i]->getVel( vel ); |
| 97 |
< |
atoms[i]->getFrc( frc ); |
| 96 |
> |
calcVelScale(); |
| 97 |
> |
|
| 98 |
> |
for( i=0; i<integrableObjects.size(); i++ ){ |
| 99 |
|
|
| 100 |
< |
mass = atoms[i]->getMass(); |
| 100 |
> |
integrableObjects[i]->getVel( vel ); |
| 101 |
> |
integrableObjects[i]->getFrc( frc ); |
| 102 |
|
|
| 103 |
+ |
mass = integrableObjects[i]->getMass(); |
| 104 |
+ |
|
| 105 |
|
getVelScaleA( sc, vel ); |
| 106 |
|
|
| 107 |
|
for (j=0; j < 3; j++) { |
| 111 |
|
|
| 112 |
|
} |
| 113 |
|
|
| 114 |
< |
atoms[i]->setVel( vel ); |
| 114 |
> |
integrableObjects[i]->setVel( vel ); |
| 115 |
|
|
| 116 |
< |
if( atoms[i]->isDirectional() ){ |
| 116 |
> |
if( integrableObjects[i]->isDirectional() ){ |
| 117 |
|
|
| 120 |
– |
dAtom = (DirectionalAtom *)atoms[i]; |
| 121 |
– |
|
| 118 |
|
// get and convert the torque to body frame |
| 119 |
|
|
| 120 |
< |
dAtom->getTrq( Tb ); |
| 121 |
< |
dAtom->lab2Body( Tb ); |
| 120 |
> |
integrableObjects[i]->getTrq( Tb ); |
| 121 |
> |
integrableObjects[i]->lab2Body( Tb ); |
| 122 |
|
|
| 123 |
|
// get the angular momentum, and propagate a half step |
| 124 |
|
|
| 125 |
< |
dAtom->getJ( ji ); |
| 125 |
> |
integrableObjects[i]->getJ( ji ); |
| 126 |
|
|
| 127 |
|
for (j=0; j < 3; j++) |
| 128 |
|
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
| 129 |
|
|
| 130 |
< |
this->rotationPropagation( dAtom, ji ); |
| 130 |
> |
this->rotationPropagation( integrableObjects[i], ji ); |
| 131 |
|
|
| 132 |
< |
dAtom->setJ( ji ); |
| 132 |
> |
integrableObjects[i]->setJ( ji ); |
| 133 |
|
} |
| 134 |
|
} |
| 135 |
|
|
| 142 |
|
integralOfChidt += dt2*chi; |
| 143 |
|
|
| 144 |
|
//save the old positions |
| 145 |
< |
for(i = 0; i < nAtoms; i++){ |
| 146 |
< |
atoms[i]->getPos(pos); |
| 145 |
> |
for(i = 0; i < integrableObjects.size(); i++){ |
| 146 |
> |
integrableObjects[i]->getPos(pos); |
| 147 |
|
for(j = 0; j < 3; j++) |
| 148 |
|
oldPos[i*3 + j] = pos[j]; |
| 149 |
|
} |
| 152 |
|
|
| 153 |
|
for(k = 0; k < 5; k ++){ |
| 154 |
|
|
| 155 |
< |
for(i =0 ; i < nAtoms; i++){ |
| 155 |
> |
for(i =0 ; i < integrableObjects.size(); i++){ |
| 156 |
|
|
| 157 |
< |
atoms[i]->getVel(vel); |
| 158 |
< |
atoms[i]->getPos(pos); |
| 157 |
> |
integrableObjects[i]->getVel(vel); |
| 158 |
> |
integrableObjects[i]->getPos(pos); |
| 159 |
|
|
| 160 |
|
this->getPosScale( pos, COM, i, sc ); |
| 161 |
|
|
| 162 |
|
for(j = 0; j < 3; j++) |
| 163 |
|
pos[j] = oldPos[i*3 + j] + dt*(vel[j] + sc[j]); |
| 164 |
|
|
| 165 |
< |
atoms[i]->setPos( pos ); |
| 165 |
> |
integrableObjects[i]->setPos( pos ); |
| 166 |
|
} |
| 167 |
|
|
| 168 |
|
if (nConstrained){ |
| 180 |
|
|
| 181 |
|
//new version of NPT |
| 182 |
|
int i, j, k; |
| 187 |
– |
DirectionalAtom* dAtom; |
| 183 |
|
double Tb[3], ji[3], sc[3]; |
| 184 |
|
double vel[3], frc[3]; |
| 185 |
|
double mass; |
| 186 |
|
|
| 187 |
|
// Set things up for the iteration: |
| 188 |
|
|
| 189 |
< |
for( i=0; i<nAtoms; i++ ){ |
| 189 |
> |
for( i=0; i<integrableObjects.size(); i++ ){ |
| 190 |
|
|
| 191 |
< |
atoms[i]->getVel( vel ); |
| 191 |
> |
integrableObjects[i]->getVel( vel ); |
| 192 |
|
|
| 193 |
|
for (j=0; j < 3; j++) |
| 194 |
|
oldVel[3*i + j] = vel[j]; |
| 195 |
|
|
| 196 |
< |
if( atoms[i]->isDirectional() ){ |
| 196 |
> |
if( integrableObjects[i]->isDirectional() ){ |
| 197 |
|
|
| 198 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
| 198 |
> |
integrableObjects[i]->getJ( ji ); |
| 199 |
|
|
| 205 |
– |
dAtom->getJ( ji ); |
| 206 |
– |
|
| 200 |
|
for (j=0; j < 3; j++) |
| 201 |
|
oldJi[3*i + j] = ji[j]; |
| 202 |
|
|
| 216 |
|
|
| 217 |
|
this->evolveChiB(); |
| 218 |
|
this->evolveEtaB(); |
| 219 |
+ |
this->calcVelScale(); |
| 220 |
|
|
| 221 |
< |
for( i=0; i<nAtoms; i++ ){ |
| 221 |
> |
for( i=0; i<integrableObjects.size(); i++ ){ |
| 222 |
|
|
| 223 |
< |
atoms[i]->getFrc( frc ); |
| 224 |
< |
atoms[i]->getVel(vel); |
| 223 |
> |
integrableObjects[i]->getFrc( frc ); |
| 224 |
> |
integrableObjects[i]->getVel(vel); |
| 225 |
|
|
| 226 |
< |
mass = atoms[i]->getMass(); |
| 226 |
> |
mass = integrableObjects[i]->getMass(); |
| 227 |
|
|
| 228 |
|
getVelScaleB( sc, i ); |
| 229 |
|
|
| 231 |
|
for (j=0; j < 3; j++) |
| 232 |
|
vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - sc[j]); |
| 233 |
|
|
| 234 |
< |
atoms[i]->setVel( vel ); |
| 234 |
> |
integrableObjects[i]->setVel( vel ); |
| 235 |
|
|
| 236 |
< |
if( atoms[i]->isDirectional() ){ |
| 236 |
> |
if( integrableObjects[i]->isDirectional() ){ |
| 237 |
|
|
| 244 |
– |
dAtom = (DirectionalAtom *)atoms[i]; |
| 245 |
– |
|
| 238 |
|
// get and convert the torque to body frame |
| 239 |
|
|
| 240 |
< |
dAtom->getTrq( Tb ); |
| 241 |
< |
dAtom->lab2Body( Tb ); |
| 240 |
> |
integrableObjects[i]->getTrq( Tb ); |
| 241 |
> |
integrableObjects[i]->lab2Body( Tb ); |
| 242 |
|
|
| 243 |
|
for (j=0; j < 3; j++) |
| 244 |
|
ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); |
| 245 |
|
|
| 246 |
< |
dAtom->setJ( ji ); |
| 246 |
> |
integrableObjects[i]->setJ( ji ); |
| 247 |
|
} |
| 248 |
|
} |
| 249 |
|
|
| 351 |
|
} |
| 352 |
|
|
| 353 |
|
// We need NkBT a lot, so just set it here: This is the RAW number |
| 354 |
< |
// of particles, so no subtraction or addition of constraints or |
| 354 |
> |
// of integrableObjects, so no subtraction or addition of constraints or |
| 355 |
|
// orientational degrees of freedom: |
| 356 |
|
|
| 357 |
< |
NkBT = (double)Nparticles * kB * targetTemp; |
| 357 |
> |
NkBT = (double)(info->getTotIntegrableObjects()) * kB * targetTemp; |
| 358 |
|
|
| 359 |
|
// fkBT is used because the thermostat operates on more degrees of freedom |
| 360 |
|
// than the barostat (when there are particles with orientational degrees |
| 361 |
< |
// of freedom). ndf = 3 * (n_atoms + n_oriented -1) - n_constraint - nZcons |
| 361 |
> |
// of freedom). |
| 362 |
|
|
| 363 |
< |
fkBT = (double)info->ndf * kB * targetTemp; |
| 363 |
> |
fkBT = (double)(info->getNDF()) * kB * targetTemp; |
| 364 |
|
|
| 365 |
|
tt2 = tauThermostat * tauThermostat; |
| 366 |
|
tb2 = tauBarostat * tauBarostat; |