| 62 |
|
integralOfChidt = integralOfChidtValue->getData(); |
| 63 |
|
} |
| 64 |
|
|
| 65 |
< |
oldPos = new double[3*nAtoms]; |
| 66 |
< |
oldVel = new double[3*nAtoms]; |
| 67 |
< |
oldJi = new double[3*nAtoms]; |
| 65 |
> |
oldPos = new double[3*integrableObjects.size()]; |
| 66 |
> |
oldVel = new double[3*integrableObjects.size()]; |
| 67 |
> |
oldJi = new double[3*integrableObjects.size()]; |
| 68 |
|
#ifdef IS_MPI |
| 69 |
|
Nparticles = mpiSim->getTotAtoms(); |
| 70 |
|
#else |
| 83 |
|
|
| 84 |
|
//new version of NPT |
| 85 |
|
int i, j, k; |
| 86 |
– |
DirectionalAtom* dAtom; |
| 86 |
|
double Tb[3], ji[3]; |
| 87 |
|
double mass; |
| 88 |
|
double vel[3], pos[3], frc[3]; |
| 100 |
|
|
| 101 |
|
calcVelScale(); |
| 102 |
|
|
| 103 |
< |
for( i=0; i<nAtoms; i++ ){ |
| 103 |
> |
for( i=0; i<integrableObjects.size(); i++ ){ |
| 104 |
|
|
| 105 |
< |
atoms[i]->getVel( vel ); |
| 106 |
< |
atoms[i]->getFrc( frc ); |
| 105 |
> |
integrableObjects[i]->getVel( vel ); |
| 106 |
> |
integrableObjects[i]->getFrc( frc ); |
| 107 |
|
|
| 108 |
< |
mass = atoms[i]->getMass(); |
| 108 |
> |
mass = integrableObjects[i]->getMass(); |
| 109 |
|
|
| 110 |
|
getVelScaleA( sc, vel ); |
| 111 |
|
|
| 116 |
|
|
| 117 |
|
} |
| 118 |
|
|
| 119 |
< |
atoms[i]->setVel( vel ); |
| 119 |
> |
integrableObjects[i]->setVel( vel ); |
| 120 |
|
|
| 121 |
< |
if( atoms[i]->isDirectional() ){ |
| 121 |
> |
if( integrableObjects[i]->isDirectional() ){ |
| 122 |
|
|
| 124 |
– |
dAtom = (DirectionalAtom *)atoms[i]; |
| 125 |
– |
|
| 123 |
|
// get and convert the torque to body frame |
| 124 |
|
|
| 125 |
< |
dAtom->getTrq( Tb ); |
| 126 |
< |
dAtom->lab2Body( Tb ); |
| 125 |
> |
integrableObjects[i]->getTrq( Tb ); |
| 126 |
> |
integrableObjects[i]->lab2Body( Tb ); |
| 127 |
|
|
| 128 |
|
// get the angular momentum, and propagate a half step |
| 129 |
|
|
| 130 |
< |
dAtom->getJ( ji ); |
| 130 |
> |
integrableObjects[i]->getJ( ji ); |
| 131 |
|
|
| 132 |
|
for (j=0; j < 3; j++) |
| 133 |
|
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
| 134 |
|
|
| 135 |
< |
this->rotationPropagation( dAtom, ji ); |
| 135 |
> |
this->rotationPropagation( integrableObjects[i], ji ); |
| 136 |
|
|
| 137 |
< |
dAtom->setJ( ji ); |
| 137 |
> |
integrableObjects[i]->setJ( ji ); |
| 138 |
|
} |
| 139 |
|
} |
| 140 |
|
|
| 147 |
|
integralOfChidt += dt2*chi; |
| 148 |
|
|
| 149 |
|
//save the old positions |
| 150 |
< |
for(i = 0; i < nAtoms; i++){ |
| 151 |
< |
atoms[i]->getPos(pos); |
| 150 |
> |
for(i = 0; i < integrableObjects.size(); i++){ |
| 151 |
> |
integrableObjects[i]->getPos(pos); |
| 152 |
|
for(j = 0; j < 3; j++) |
| 153 |
|
oldPos[i*3 + j] = pos[j]; |
| 154 |
|
} |
| 157 |
|
|
| 158 |
|
for(k = 0; k < 5; k ++){ |
| 159 |
|
|
| 160 |
< |
for(i =0 ; i < nAtoms; i++){ |
| 160 |
> |
for(i =0 ; i < integrableObjects.size(); i++){ |
| 161 |
|
|
| 162 |
< |
atoms[i]->getVel(vel); |
| 163 |
< |
atoms[i]->getPos(pos); |
| 162 |
> |
integrableObjects[i]->getVel(vel); |
| 163 |
> |
integrableObjects[i]->getPos(pos); |
| 164 |
|
|
| 165 |
|
this->getPosScale( pos, COM, i, sc ); |
| 166 |
|
|
| 167 |
|
for(j = 0; j < 3; j++) |
| 168 |
|
pos[j] = oldPos[i*3 + j] + dt*(vel[j] + sc[j]); |
| 169 |
|
|
| 170 |
< |
atoms[i]->setPos( pos ); |
| 170 |
> |
integrableObjects[i]->setPos( pos ); |
| 171 |
|
} |
| 172 |
|
|
| 173 |
|
if (nConstrained){ |
| 185 |
|
|
| 186 |
|
//new version of NPT |
| 187 |
|
int i, j, k; |
| 191 |
– |
DirectionalAtom* dAtom; |
| 188 |
|
double Tb[3], ji[3], sc[3]; |
| 189 |
|
double vel[3], frc[3]; |
| 190 |
|
double mass; |
| 191 |
|
|
| 192 |
|
// Set things up for the iteration: |
| 193 |
|
|
| 194 |
< |
for( i=0; i<nAtoms; i++ ){ |
| 194 |
> |
for( i=0; i<integrableObjects.size(); i++ ){ |
| 195 |
|
|
| 196 |
< |
atoms[i]->getVel( vel ); |
| 196 |
> |
integrableObjects[i]->getVel( vel ); |
| 197 |
|
|
| 198 |
|
for (j=0; j < 3; j++) |
| 199 |
|
oldVel[3*i + j] = vel[j]; |
| 200 |
|
|
| 201 |
< |
if( atoms[i]->isDirectional() ){ |
| 201 |
> |
if( integrableObjects[i]->isDirectional() ){ |
| 202 |
|
|
| 203 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
| 203 |
> |
integrableObjects[i]->getJ( ji ); |
| 204 |
|
|
| 209 |
– |
dAtom->getJ( ji ); |
| 210 |
– |
|
| 205 |
|
for (j=0; j < 3; j++) |
| 206 |
|
oldJi[3*i + j] = ji[j]; |
| 207 |
|
|
| 223 |
|
this->evolveEtaB(); |
| 224 |
|
this->calcVelScale(); |
| 225 |
|
|
| 226 |
< |
for( i=0; i<nAtoms; i++ ){ |
| 226 |
> |
for( i=0; i<integrableObjects.size(); i++ ){ |
| 227 |
|
|
| 228 |
< |
atoms[i]->getFrc( frc ); |
| 229 |
< |
atoms[i]->getVel(vel); |
| 228 |
> |
integrableObjects[i]->getFrc( frc ); |
| 229 |
> |
integrableObjects[i]->getVel(vel); |
| 230 |
|
|
| 231 |
< |
mass = atoms[i]->getMass(); |
| 231 |
> |
mass = integrableObjects[i]->getMass(); |
| 232 |
|
|
| 233 |
|
getVelScaleB( sc, i ); |
| 234 |
|
|
| 236 |
|
for (j=0; j < 3; j++) |
| 237 |
|
vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - sc[j]); |
| 238 |
|
|
| 239 |
< |
atoms[i]->setVel( vel ); |
| 239 |
> |
integrableObjects[i]->setVel( vel ); |
| 240 |
|
|
| 241 |
< |
if( atoms[i]->isDirectional() ){ |
| 241 |
> |
if( integrableObjects[i]->isDirectional() ){ |
| 242 |
|
|
| 249 |
– |
dAtom = (DirectionalAtom *)atoms[i]; |
| 250 |
– |
|
| 243 |
|
// get and convert the torque to body frame |
| 244 |
|
|
| 245 |
< |
dAtom->getTrq( Tb ); |
| 246 |
< |
dAtom->lab2Body( Tb ); |
| 245 |
> |
integrableObjects[i]->getTrq( Tb ); |
| 246 |
> |
integrableObjects[i]->lab2Body( Tb ); |
| 247 |
|
|
| 248 |
|
for (j=0; j < 3; j++) |
| 249 |
|
ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); |
| 250 |
|
|
| 251 |
< |
dAtom->setJ( ji ); |
| 251 |
> |
integrableObjects[i]->setJ( ji ); |
| 252 |
|
} |
| 253 |
|
} |
| 254 |
|
|