62 |
|
integralOfChidt = integralOfChidtValue->getData(); |
63 |
|
} |
64 |
|
|
65 |
< |
oldPos = new double[3*nAtoms]; |
66 |
< |
oldVel = new double[3*nAtoms]; |
67 |
< |
oldJi = new double[3*nAtoms]; |
68 |
< |
#ifdef IS_MPI |
69 |
< |
Nparticles = mpiSim->getTotAtoms(); |
70 |
< |
#else |
71 |
< |
Nparticles = theInfo->n_atoms; |
72 |
< |
#endif |
65 |
> |
oldPos = new double[3*integrableObjects.size()]; |
66 |
> |
oldVel = new double[3*integrableObjects.size()]; |
67 |
> |
oldJi = new double[3*integrableObjects.size()]; |
68 |
|
|
69 |
|
} |
70 |
|
|
78 |
|
|
79 |
|
//new version of NPT |
80 |
|
int i, j, k; |
86 |
– |
DirectionalAtom* dAtom; |
81 |
|
double Tb[3], ji[3]; |
82 |
|
double mass; |
83 |
|
double vel[3], pos[3], frc[3]; |
95 |
|
|
96 |
|
calcVelScale(); |
97 |
|
|
98 |
< |
for( i=0; i<nAtoms; i++ ){ |
98 |
> |
for( i=0; i<integrableObjects.size(); i++ ){ |
99 |
|
|
100 |
< |
atoms[i]->getVel( vel ); |
101 |
< |
atoms[i]->getFrc( frc ); |
100 |
> |
integrableObjects[i]->getVel( vel ); |
101 |
> |
integrableObjects[i]->getFrc( frc ); |
102 |
|
|
103 |
< |
mass = atoms[i]->getMass(); |
103 |
> |
mass = integrableObjects[i]->getMass(); |
104 |
|
|
105 |
|
getVelScaleA( sc, vel ); |
106 |
|
|
111 |
|
|
112 |
|
} |
113 |
|
|
114 |
< |
atoms[i]->setVel( vel ); |
114 |
> |
integrableObjects[i]->setVel( vel ); |
115 |
|
|
116 |
< |
if( atoms[i]->isDirectional() ){ |
116 |
> |
if( integrableObjects[i]->isDirectional() ){ |
117 |
|
|
124 |
– |
dAtom = (DirectionalAtom *)atoms[i]; |
125 |
– |
|
118 |
|
// get and convert the torque to body frame |
119 |
|
|
120 |
< |
dAtom->getTrq( Tb ); |
121 |
< |
dAtom->lab2Body( Tb ); |
120 |
> |
integrableObjects[i]->getTrq( Tb ); |
121 |
> |
integrableObjects[i]->lab2Body( Tb ); |
122 |
|
|
123 |
|
// get the angular momentum, and propagate a half step |
124 |
|
|
125 |
< |
dAtom->getJ( ji ); |
125 |
> |
integrableObjects[i]->getJ( ji ); |
126 |
|
|
127 |
|
for (j=0; j < 3; j++) |
128 |
|
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
129 |
|
|
130 |
< |
this->rotationPropagation( dAtom, ji ); |
130 |
> |
this->rotationPropagation( integrableObjects[i], ji ); |
131 |
|
|
132 |
< |
dAtom->setJ( ji ); |
132 |
> |
integrableObjects[i]->setJ( ji ); |
133 |
|
} |
134 |
|
} |
135 |
|
|
142 |
|
integralOfChidt += dt2*chi; |
143 |
|
|
144 |
|
//save the old positions |
145 |
< |
for(i = 0; i < nAtoms; i++){ |
146 |
< |
atoms[i]->getPos(pos); |
145 |
> |
for(i = 0; i < integrableObjects.size(); i++){ |
146 |
> |
integrableObjects[i]->getPos(pos); |
147 |
|
for(j = 0; j < 3; j++) |
148 |
|
oldPos[i*3 + j] = pos[j]; |
149 |
|
} |
152 |
|
|
153 |
|
for(k = 0; k < 5; k ++){ |
154 |
|
|
155 |
< |
for(i =0 ; i < nAtoms; i++){ |
155 |
> |
for(i =0 ; i < integrableObjects.size(); i++){ |
156 |
|
|
157 |
< |
atoms[i]->getVel(vel); |
158 |
< |
atoms[i]->getPos(pos); |
157 |
> |
integrableObjects[i]->getVel(vel); |
158 |
> |
integrableObjects[i]->getPos(pos); |
159 |
|
|
160 |
|
this->getPosScale( pos, COM, i, sc ); |
161 |
|
|
162 |
|
for(j = 0; j < 3; j++) |
163 |
|
pos[j] = oldPos[i*3 + j] + dt*(vel[j] + sc[j]); |
164 |
|
|
165 |
< |
atoms[i]->setPos( pos ); |
165 |
> |
integrableObjects[i]->setPos( pos ); |
166 |
|
} |
167 |
|
|
168 |
< |
if (nConstrained){ |
177 |
< |
constrainA(); |
178 |
< |
} |
168 |
> |
consFramework->doConstrainA(); |
169 |
|
} |
170 |
|
|
171 |
|
|
178 |
|
|
179 |
|
//new version of NPT |
180 |
|
int i, j, k; |
191 |
– |
DirectionalAtom* dAtom; |
181 |
|
double Tb[3], ji[3], sc[3]; |
182 |
|
double vel[3], frc[3]; |
183 |
|
double mass; |
184 |
|
|
185 |
|
// Set things up for the iteration: |
186 |
|
|
187 |
< |
for( i=0; i<nAtoms; i++ ){ |
187 |
> |
for( i=0; i<integrableObjects.size(); i++ ){ |
188 |
|
|
189 |
< |
atoms[i]->getVel( vel ); |
189 |
> |
integrableObjects[i]->getVel( vel ); |
190 |
|
|
191 |
|
for (j=0; j < 3; j++) |
192 |
|
oldVel[3*i + j] = vel[j]; |
193 |
|
|
194 |
< |
if( atoms[i]->isDirectional() ){ |
194 |
> |
if( integrableObjects[i]->isDirectional() ){ |
195 |
|
|
196 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
196 |
> |
integrableObjects[i]->getJ( ji ); |
197 |
|
|
209 |
– |
dAtom->getJ( ji ); |
210 |
– |
|
198 |
|
for (j=0; j < 3; j++) |
199 |
|
oldJi[3*i + j] = ji[j]; |
200 |
|
|
216 |
|
this->evolveEtaB(); |
217 |
|
this->calcVelScale(); |
218 |
|
|
219 |
< |
for( i=0; i<nAtoms; i++ ){ |
219 |
> |
for( i=0; i<integrableObjects.size(); i++ ){ |
220 |
|
|
221 |
< |
atoms[i]->getFrc( frc ); |
222 |
< |
atoms[i]->getVel(vel); |
221 |
> |
integrableObjects[i]->getFrc( frc ); |
222 |
> |
integrableObjects[i]->getVel(vel); |
223 |
|
|
224 |
< |
mass = atoms[i]->getMass(); |
224 |
> |
mass = integrableObjects[i]->getMass(); |
225 |
|
|
226 |
|
getVelScaleB( sc, i ); |
227 |
|
|
229 |
|
for (j=0; j < 3; j++) |
230 |
|
vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - sc[j]); |
231 |
|
|
232 |
< |
atoms[i]->setVel( vel ); |
232 |
> |
integrableObjects[i]->setVel( vel ); |
233 |
|
|
234 |
< |
if( atoms[i]->isDirectional() ){ |
234 |
> |
if( integrableObjects[i]->isDirectional() ){ |
235 |
|
|
249 |
– |
dAtom = (DirectionalAtom *)atoms[i]; |
250 |
– |
|
236 |
|
// get and convert the torque to body frame |
237 |
|
|
238 |
< |
dAtom->getTrq( Tb ); |
239 |
< |
dAtom->lab2Body( Tb ); |
238 |
> |
integrableObjects[i]->getTrq( Tb ); |
239 |
> |
integrableObjects[i]->lab2Body( Tb ); |
240 |
|
|
241 |
|
for (j=0; j < 3; j++) |
242 |
|
ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); |
243 |
|
|
244 |
< |
dAtom->setJ( ji ); |
244 |
> |
integrableObjects[i]->setJ( ji ); |
245 |
|
} |
246 |
|
} |
247 |
|
|
248 |
< |
if (nConstrained){ |
264 |
< |
constrainB(); |
265 |
< |
} |
248 |
> |
consFramework->doConstrainA(); |
249 |
|
|
250 |
|
if ( this->chiConverged() && this->etaConverged() ) break; |
251 |
|
} |
321 |
|
|
322 |
|
if (!have_tau_barostat) { |
323 |
|
sprintf( painCave.errMsg, |
324 |
< |
"NPT error: If you use the NPT\n" |
325 |
< |
" integrator, you must set tauBarostat.\n"); |
324 |
> |
"If you use the NPT integrator, you must set tauBarostat.\n"); |
325 |
> |
painCave.severity = OOPSE_ERROR; |
326 |
|
painCave.isFatal = 1; |
327 |
|
simError(); |
328 |
|
return -1; |
330 |
|
|
331 |
|
if (!have_chi_tolerance) { |
332 |
|
sprintf( painCave.errMsg, |
333 |
< |
"NPT warning: setting chi tolerance to 1e-6\n"); |
333 |
> |
"Setting chi tolerance to 1e-6 in NPT integrator\n"); |
334 |
|
chiTolerance = 1e-6; |
335 |
|
have_chi_tolerance = 1; |
336 |
+ |
painCave.severity = OOPSE_INFO; |
337 |
|
painCave.isFatal = 0; |
338 |
|
simError(); |
339 |
|
} |
340 |
|
|
341 |
|
if (!have_eta_tolerance) { |
342 |
|
sprintf( painCave.errMsg, |
343 |
< |
"NPT warning: setting eta tolerance to 1e-6\n"); |
343 |
> |
"Setting eta tolerance to 1e-6 in NPT integrator"); |
344 |
|
etaTolerance = 1e-6; |
345 |
|
have_eta_tolerance = 1; |
346 |
+ |
painCave.severity = OOPSE_INFO; |
347 |
|
painCave.isFatal = 0; |
348 |
|
simError(); |
349 |
|
} |
350 |
|
|
351 |
|
// We need NkBT a lot, so just set it here: This is the RAW number |
352 |
< |
// of particles, so no subtraction or addition of constraints or |
352 |
> |
// of integrableObjects, so no subtraction or addition of constraints or |
353 |
|
// orientational degrees of freedom: |
354 |
|
|
355 |
< |
NkBT = (double)Nparticles * kB * targetTemp; |
355 |
> |
NkBT = (double)(info->getTotIntegrableObjects()) * kB * targetTemp; |
356 |
|
|
357 |
|
// fkBT is used because the thermostat operates on more degrees of freedom |
358 |
|
// than the barostat (when there are particles with orientational degrees |
359 |
< |
// of freedom). ndf = 3 * (n_atoms + n_oriented -1) - n_constraint - nZcons |
359 |
> |
// of freedom). |
360 |
|
|
361 |
< |
fkBT = (double)info->ndf * kB * targetTemp; |
361 |
> |
fkBT = (double)(info->getNDF()) * kB * targetTemp; |
362 |
|
|
363 |
|
tt2 = tauThermostat * tauThermostat; |
364 |
|
tb2 = tauBarostat * tauBarostat; |