1 |
< |
#include <cmath> |
1 |
> |
#include <math.h> |
2 |
> |
|
3 |
|
#include "Atom.hpp" |
4 |
|
#include "SRI.hpp" |
5 |
|
#include "AbstractClasses.hpp" |
8 |
|
#include "Thermo.hpp" |
9 |
|
#include "ReadWrite.hpp" |
10 |
|
#include "Integrator.hpp" |
11 |
< |
#include "simError.h" |
11 |
> |
#include "simError.h" |
12 |
|
|
13 |
|
#ifdef IS_MPI |
14 |
|
#include "mpiSimulation.hpp" |
19 |
|
// modification of the Hoover algorithm: |
20 |
|
// |
21 |
|
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
22 |
< |
// Molec. Phys., 78, 533. |
22 |
> |
// Molec. Phys., 78, 533. |
23 |
|
// |
24 |
|
// and |
25 |
< |
// |
25 |
> |
// |
26 |
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
27 |
|
|
28 |
|
template<typename T> NPT<T>::NPT ( SimInfo *theInfo, ForceFields* the_ff): |
29 |
|
T( theInfo, the_ff ) |
30 |
|
{ |
31 |
+ |
GenericData* data; |
32 |
+ |
DoubleData * chiValue; |
33 |
+ |
DoubleData * integralOfChidtValue; |
34 |
+ |
|
35 |
+ |
chiValue = NULL; |
36 |
+ |
integralOfChidtValue = NULL; |
37 |
+ |
|
38 |
|
chi = 0.0; |
39 |
|
integralOfChidt = 0.0; |
40 |
|
have_tau_thermostat = 0; |
45 |
|
have_eta_tolerance = 0; |
46 |
|
have_pos_iter_tolerance = 0; |
47 |
|
|
48 |
< |
oldPos = new double[3*nAtoms]; |
49 |
< |
oldVel = new double[3*nAtoms]; |
50 |
< |
oldJi = new double[3*nAtoms]; |
51 |
< |
#ifdef IS_MPI |
52 |
< |
Nparticles = mpiSim->getTotAtoms(); |
45 |
< |
#else |
46 |
< |
Nparticles = theInfo->n_atoms; |
47 |
< |
#endif |
48 |
> |
// retrieve chi and integralOfChidt from simInfo |
49 |
> |
data = info->getProperty(CHIVALUE_ID); |
50 |
> |
if(data){ |
51 |
> |
chiValue = dynamic_cast<DoubleData*>(data); |
52 |
> |
} |
53 |
|
|
54 |
+ |
data = info->getProperty(INTEGRALOFCHIDT_ID); |
55 |
+ |
if(data){ |
56 |
+ |
integralOfChidtValue = dynamic_cast<DoubleData*>(data); |
57 |
+ |
} |
58 |
+ |
|
59 |
+ |
// chi and integralOfChidt should appear by pair |
60 |
+ |
if(chiValue && integralOfChidtValue){ |
61 |
+ |
chi = chiValue->getData(); |
62 |
+ |
integralOfChidt = integralOfChidtValue->getData(); |
63 |
+ |
} |
64 |
+ |
|
65 |
+ |
oldPos = new double[3*integrableObjects.size()]; |
66 |
+ |
oldVel = new double[3*integrableObjects.size()]; |
67 |
+ |
oldJi = new double[3*integrableObjects.size()]; |
68 |
+ |
|
69 |
|
} |
70 |
|
|
71 |
|
template<typename T> NPT<T>::~NPT() { |
75 |
|
} |
76 |
|
|
77 |
|
template<typename T> void NPT<T>::moveA() { |
78 |
< |
|
78 |
> |
|
79 |
|
//new version of NPT |
80 |
|
int i, j, k; |
61 |
– |
DirectionalAtom* dAtom; |
81 |
|
double Tb[3], ji[3]; |
82 |
|
double mass; |
83 |
|
double vel[3], pos[3], frc[3]; |
88 |
|
tStats->getPressureTensor( press ); |
89 |
|
instaPress = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; |
90 |
|
instaVol = tStats->getVolume(); |
91 |
< |
|
91 |
> |
|
92 |
|
tStats->getCOM(COM); |
93 |
< |
|
93 |
> |
|
94 |
|
//evolve velocity half step |
76 |
– |
for( i=0; i<nAtoms; i++ ){ |
95 |
|
|
96 |
< |
atoms[i]->getVel( vel ); |
97 |
< |
atoms[i]->getFrc( frc ); |
96 |
> |
calcVelScale(); |
97 |
> |
|
98 |
> |
for( i=0; i<integrableObjects.size(); i++ ){ |
99 |
|
|
100 |
< |
mass = atoms[i]->getMass(); |
100 |
> |
integrableObjects[i]->getVel( vel ); |
101 |
> |
integrableObjects[i]->getFrc( frc ); |
102 |
|
|
103 |
+ |
mass = integrableObjects[i]->getMass(); |
104 |
+ |
|
105 |
|
getVelScaleA( sc, vel ); |
106 |
|
|
107 |
|
for (j=0; j < 3; j++) { |
108 |
< |
|
108 |
> |
|
109 |
|
// velocity half step (use chi from previous step here): |
110 |
|
vel[j] += dt2 * ((frc[j] / mass ) * eConvert - sc[j]); |
111 |
< |
|
111 |
> |
|
112 |
|
} |
113 |
|
|
114 |
< |
atoms[i]->setVel( vel ); |
93 |
< |
|
94 |
< |
if( atoms[i]->isDirectional() ){ |
114 |
> |
integrableObjects[i]->setVel( vel ); |
115 |
|
|
116 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
116 |
> |
if( integrableObjects[i]->isDirectional() ){ |
117 |
|
|
118 |
|
// get and convert the torque to body frame |
119 |
< |
|
120 |
< |
dAtom->getTrq( Tb ); |
121 |
< |
dAtom->lab2Body( Tb ); |
122 |
< |
|
119 |
> |
|
120 |
> |
integrableObjects[i]->getTrq( Tb ); |
121 |
> |
integrableObjects[i]->lab2Body( Tb ); |
122 |
> |
|
123 |
|
// get the angular momentum, and propagate a half step |
124 |
|
|
125 |
< |
dAtom->getJ( ji ); |
125 |
> |
integrableObjects[i]->getJ( ji ); |
126 |
|
|
127 |
< |
for (j=0; j < 3; j++) |
127 |
> |
for (j=0; j < 3; j++) |
128 |
|
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
129 |
< |
|
130 |
< |
this->rotationPropagation( dAtom, ji ); |
131 |
< |
|
132 |
< |
dAtom->setJ( ji ); |
133 |
< |
} |
129 |
> |
|
130 |
> |
this->rotationPropagation( integrableObjects[i], ji ); |
131 |
> |
|
132 |
> |
integrableObjects[i]->setJ( ji ); |
133 |
> |
} |
134 |
|
} |
135 |
|
|
136 |
|
// evolve chi and eta half step |
137 |
< |
|
137 |
> |
|
138 |
|
evolveChiA(); |
139 |
|
evolveEtaA(); |
140 |
|
|
142 |
|
integralOfChidt += dt2*chi; |
143 |
|
|
144 |
|
//save the old positions |
145 |
< |
for(i = 0; i < nAtoms; i++){ |
146 |
< |
atoms[i]->getPos(pos); |
145 |
> |
for(i = 0; i < integrableObjects.size(); i++){ |
146 |
> |
integrableObjects[i]->getPos(pos); |
147 |
|
for(j = 0; j < 3; j++) |
148 |
|
oldPos[i*3 + j] = pos[j]; |
149 |
|
} |
150 |
< |
|
151 |
< |
//the first estimation of r(t+dt) is equal to r(t) |
152 |
< |
|
150 |
> |
|
151 |
> |
//the first estimation of r(t+dt) is equal to r(t) |
152 |
> |
|
153 |
|
for(k = 0; k < 5; k ++){ |
154 |
|
|
155 |
< |
for(i =0 ; i < nAtoms; i++){ |
155 |
> |
for(i =0 ; i < integrableObjects.size(); i++){ |
156 |
|
|
157 |
< |
atoms[i]->getVel(vel); |
158 |
< |
atoms[i]->getPos(pos); |
157 |
> |
integrableObjects[i]->getVel(vel); |
158 |
> |
integrableObjects[i]->getPos(pos); |
159 |
|
|
160 |
|
this->getPosScale( pos, COM, i, sc ); |
161 |
< |
|
161 |
> |
|
162 |
|
for(j = 0; j < 3; j++) |
163 |
|
pos[j] = oldPos[i*3 + j] + dt*(vel[j] + sc[j]); |
164 |
|
|
165 |
< |
atoms[i]->setPos( pos ); |
165 |
> |
integrableObjects[i]->setPos( pos ); |
166 |
|
} |
167 |
< |
|
168 |
< |
if (nConstrained){ |
149 |
< |
constrainA(); |
150 |
< |
} |
167 |
> |
|
168 |
> |
consFramework->doConstrainA(); |
169 |
|
} |
152 |
– |
|
170 |
|
|
171 |
+ |
|
172 |
|
// Scale the box after all the positions have been moved: |
173 |
< |
|
173 |
> |
|
174 |
|
this->scaleSimBox(); |
175 |
|
} |
176 |
|
|
177 |
|
template<typename T> void NPT<T>::moveB( void ){ |
178 |
< |
|
178 |
> |
|
179 |
|
//new version of NPT |
180 |
|
int i, j, k; |
163 |
– |
DirectionalAtom* dAtom; |
181 |
|
double Tb[3], ji[3], sc[3]; |
182 |
|
double vel[3], frc[3]; |
183 |
|
double mass; |
184 |
< |
|
184 |
> |
|
185 |
|
// Set things up for the iteration: |
186 |
|
|
187 |
< |
for( i=0; i<nAtoms; i++ ){ |
187 |
> |
for( i=0; i<integrableObjects.size(); i++ ){ |
188 |
|
|
189 |
< |
atoms[i]->getVel( vel ); |
189 |
> |
integrableObjects[i]->getVel( vel ); |
190 |
|
|
191 |
|
for (j=0; j < 3; j++) |
192 |
|
oldVel[3*i + j] = vel[j]; |
193 |
|
|
194 |
< |
if( atoms[i]->isDirectional() ){ |
194 |
> |
if( integrableObjects[i]->isDirectional() ){ |
195 |
|
|
196 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
196 |
> |
integrableObjects[i]->getJ( ji ); |
197 |
|
|
181 |
– |
dAtom->getJ( ji ); |
182 |
– |
|
198 |
|
for (j=0; j < 3; j++) |
199 |
|
oldJi[3*i + j] = ji[j]; |
200 |
|
|
204 |
|
// do the iteration: |
205 |
|
|
206 |
|
instaVol = tStats->getVolume(); |
207 |
< |
|
207 |
> |
|
208 |
|
for (k=0; k < 4; k++) { |
209 |
< |
|
209 |
> |
|
210 |
|
instaTemp = tStats->getTemperature(); |
211 |
|
instaPress = tStats->getPressure(); |
212 |
|
|
214 |
|
|
215 |
|
this->evolveChiB(); |
216 |
|
this->evolveEtaB(); |
217 |
< |
|
203 |
< |
for( i=0; i<nAtoms; i++ ){ |
217 |
> |
this->calcVelScale(); |
218 |
|
|
219 |
< |
atoms[i]->getFrc( frc ); |
220 |
< |
atoms[i]->getVel(vel); |
221 |
< |
|
222 |
< |
mass = atoms[i]->getMass(); |
223 |
< |
|
219 |
> |
for( i=0; i<integrableObjects.size(); i++ ){ |
220 |
> |
|
221 |
> |
integrableObjects[i]->getFrc( frc ); |
222 |
> |
integrableObjects[i]->getVel(vel); |
223 |
> |
|
224 |
> |
mass = integrableObjects[i]->getMass(); |
225 |
> |
|
226 |
|
getVelScaleB( sc, i ); |
227 |
|
|
228 |
|
// velocity half step |
229 |
< |
for (j=0; j < 3; j++) |
229 |
> |
for (j=0; j < 3; j++) |
230 |
|
vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - sc[j]); |
215 |
– |
|
216 |
– |
atoms[i]->setVel( vel ); |
217 |
– |
|
218 |
– |
if( atoms[i]->isDirectional() ){ |
231 |
|
|
232 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
233 |
< |
|
234 |
< |
// get and convert the torque to body frame |
235 |
< |
|
236 |
< |
dAtom->getTrq( Tb ); |
237 |
< |
dAtom->lab2Body( Tb ); |
238 |
< |
|
239 |
< |
for (j=0; j < 3; j++) |
232 |
> |
integrableObjects[i]->setVel( vel ); |
233 |
> |
|
234 |
> |
if( integrableObjects[i]->isDirectional() ){ |
235 |
> |
|
236 |
> |
// get and convert the torque to body frame |
237 |
> |
|
238 |
> |
integrableObjects[i]->getTrq( Tb ); |
239 |
> |
integrableObjects[i]->lab2Body( Tb ); |
240 |
> |
|
241 |
> |
for (j=0; j < 3; j++) |
242 |
|
ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); |
243 |
< |
|
244 |
< |
dAtom->setJ( ji ); |
243 |
> |
|
244 |
> |
integrableObjects[i]->setJ( ji ); |
245 |
|
} |
246 |
|
} |
247 |
< |
|
248 |
< |
if (nConstrained){ |
249 |
< |
constrainB(); |
236 |
< |
} |
237 |
< |
|
247 |
> |
|
248 |
> |
consFramework->doConstrainA(); |
249 |
> |
|
250 |
|
if ( this->chiConverged() && this->etaConverged() ) break; |
251 |
|
} |
252 |
|
|
267 |
|
} |
268 |
|
|
269 |
|
template<typename T> void NPT<T>::evolveChiB() { |
270 |
< |
|
270 |
> |
|
271 |
|
prevChi = chi; |
272 |
|
chi = oldChi + dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
273 |
|
} |
274 |
|
|
275 |
|
template<typename T> bool NPT<T>::chiConverged() { |
276 |
< |
|
277 |
< |
return ( fabs( prevChi - chi ) <= chiTolerance ); |
276 |
> |
|
277 |
> |
return ( fabs( prevChi - chi ) <= chiTolerance ); |
278 |
|
} |
279 |
|
|
280 |
|
template<typename T> int NPT<T>::readyCheck() { |
282 |
|
//check parent's readyCheck() first |
283 |
|
if (T::readyCheck() == -1) |
284 |
|
return -1; |
285 |
< |
|
286 |
< |
// First check to see if we have a target temperature. |
287 |
< |
// Not having one is fatal. |
288 |
< |
|
285 |
> |
|
286 |
> |
// First check to see if we have a target temperature. |
287 |
> |
// Not having one is fatal. |
288 |
> |
|
289 |
|
if (!have_target_temp) { |
290 |
|
sprintf( painCave.errMsg, |
291 |
|
"NPT error: You can't use the NPT integrator\n" |
305 |
|
simError(); |
306 |
|
return -1; |
307 |
|
} |
308 |
< |
|
308 |
> |
|
309 |
|
// We must set tauThermostat. |
310 |
< |
|
310 |
> |
|
311 |
|
if (!have_tau_thermostat) { |
312 |
|
sprintf( painCave.errMsg, |
313 |
|
"NPT error: If you use the NPT\n" |
315 |
|
painCave.isFatal = 1; |
316 |
|
simError(); |
317 |
|
return -1; |
318 |
< |
} |
318 |
> |
} |
319 |
|
|
320 |
|
// We must set tauBarostat. |
321 |
< |
|
321 |
> |
|
322 |
|
if (!have_tau_barostat) { |
323 |
|
sprintf( painCave.errMsg, |
324 |
< |
"NPT error: If you use the NPT\n" |
325 |
< |
" integrator, you must set tauBarostat.\n"); |
324 |
> |
"If you use the NPT integrator, you must set tauBarostat.\n"); |
325 |
> |
painCave.severity = OOPSE_ERROR; |
326 |
|
painCave.isFatal = 1; |
327 |
|
simError(); |
328 |
|
return -1; |
329 |
< |
} |
329 |
> |
} |
330 |
|
|
331 |
|
if (!have_chi_tolerance) { |
332 |
|
sprintf( painCave.errMsg, |
333 |
< |
"NPT warning: setting chi tolerance to 1e-6\n"); |
333 |
> |
"Setting chi tolerance to 1e-6 in NPT integrator\n"); |
334 |
|
chiTolerance = 1e-6; |
335 |
|
have_chi_tolerance = 1; |
336 |
+ |
painCave.severity = OOPSE_INFO; |
337 |
|
painCave.isFatal = 0; |
338 |
|
simError(); |
339 |
< |
} |
339 |
> |
} |
340 |
|
|
341 |
|
if (!have_eta_tolerance) { |
342 |
|
sprintf( painCave.errMsg, |
343 |
< |
"NPT warning: setting eta tolerance to 1e-6\n"); |
343 |
> |
"Setting eta tolerance to 1e-6 in NPT integrator"); |
344 |
|
etaTolerance = 1e-6; |
345 |
|
have_eta_tolerance = 1; |
346 |
+ |
painCave.severity = OOPSE_INFO; |
347 |
|
painCave.isFatal = 0; |
348 |
|
simError(); |
349 |
< |
} |
350 |
< |
|
349 |
> |
} |
350 |
> |
|
351 |
|
// We need NkBT a lot, so just set it here: This is the RAW number |
352 |
< |
// of particles, so no subtraction or addition of constraints or |
352 |
> |
// of integrableObjects, so no subtraction or addition of constraints or |
353 |
|
// orientational degrees of freedom: |
354 |
< |
|
355 |
< |
NkBT = (double)Nparticles * kB * targetTemp; |
356 |
< |
|
354 |
> |
|
355 |
> |
NkBT = (double)(info->getTotIntegrableObjects()) * kB * targetTemp; |
356 |
> |
|
357 |
|
// fkBT is used because the thermostat operates on more degrees of freedom |
358 |
|
// than the barostat (when there are particles with orientational degrees |
359 |
< |
// of freedom). ndf = 3 * (n_atoms + n_oriented -1) - n_constraint - nZcons |
346 |
< |
|
347 |
< |
fkBT = (double)info->ndf * kB * targetTemp; |
359 |
> |
// of freedom). |
360 |
|
|
361 |
+ |
fkBT = (double)(info->getNDF()) * kB * targetTemp; |
362 |
+ |
|
363 |
|
tt2 = tauThermostat * tauThermostat; |
364 |
|
tb2 = tauBarostat * tauBarostat; |
365 |
|
|