1 |
|
#include <math.h> |
2 |
+ |
|
3 |
|
#include "Atom.hpp" |
4 |
|
#include "SRI.hpp" |
5 |
|
#include "AbstractClasses.hpp" |
62 |
|
integralOfChidt = integralOfChidtValue->getData(); |
63 |
|
} |
64 |
|
|
65 |
< |
oldPos = new double[3*nAtoms]; |
66 |
< |
oldVel = new double[3*nAtoms]; |
67 |
< |
oldJi = new double[3*nAtoms]; |
67 |
< |
#ifdef IS_MPI |
68 |
< |
Nparticles = mpiSim->getTotAtoms(); |
69 |
< |
#else |
70 |
< |
Nparticles = theInfo->n_atoms; |
71 |
< |
#endif |
65 |
> |
oldPos = new double[3*integrableObjects.size()]; |
66 |
> |
oldVel = new double[3*integrableObjects.size()]; |
67 |
> |
oldJi = new double[3*integrableObjects.size()]; |
68 |
|
|
69 |
|
} |
70 |
|
|
78 |
|
|
79 |
|
//new version of NPT |
80 |
|
int i, j, k; |
85 |
– |
DirectionalAtom* dAtom; |
81 |
|
double Tb[3], ji[3]; |
82 |
|
double mass; |
83 |
|
double vel[3], pos[3], frc[3]; |
92 |
|
tStats->getCOM(COM); |
93 |
|
|
94 |
|
//evolve velocity half step |
100 |
– |
for( i=0; i<nAtoms; i++ ){ |
95 |
|
|
96 |
< |
atoms[i]->getVel( vel ); |
97 |
< |
atoms[i]->getFrc( frc ); |
96 |
> |
calcVelScale(); |
97 |
> |
|
98 |
> |
for( i=0; i<integrableObjects.size(); i++ ){ |
99 |
|
|
100 |
< |
mass = atoms[i]->getMass(); |
100 |
> |
integrableObjects[i]->getVel( vel ); |
101 |
> |
integrableObjects[i]->getFrc( frc ); |
102 |
|
|
103 |
+ |
mass = integrableObjects[i]->getMass(); |
104 |
+ |
|
105 |
|
getVelScaleA( sc, vel ); |
106 |
|
|
107 |
|
for (j=0; j < 3; j++) { |
111 |
|
|
112 |
|
} |
113 |
|
|
114 |
< |
atoms[i]->setVel( vel ); |
114 |
> |
integrableObjects[i]->setVel( vel ); |
115 |
|
|
116 |
< |
if( atoms[i]->isDirectional() ){ |
116 |
> |
if( integrableObjects[i]->isDirectional() ){ |
117 |
|
|
120 |
– |
dAtom = (DirectionalAtom *)atoms[i]; |
121 |
– |
|
118 |
|
// get and convert the torque to body frame |
119 |
|
|
120 |
< |
dAtom->getTrq( Tb ); |
121 |
< |
dAtom->lab2Body( Tb ); |
120 |
> |
integrableObjects[i]->getTrq( Tb ); |
121 |
> |
integrableObjects[i]->lab2Body( Tb ); |
122 |
|
|
123 |
|
// get the angular momentum, and propagate a half step |
124 |
|
|
125 |
< |
dAtom->getJ( ji ); |
125 |
> |
integrableObjects[i]->getJ( ji ); |
126 |
|
|
127 |
|
for (j=0; j < 3; j++) |
128 |
|
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
129 |
|
|
130 |
< |
this->rotationPropagation( dAtom, ji ); |
130 |
> |
this->rotationPropagation( integrableObjects[i], ji ); |
131 |
|
|
132 |
< |
dAtom->setJ( ji ); |
132 |
> |
integrableObjects[i]->setJ( ji ); |
133 |
|
} |
134 |
|
} |
135 |
|
|
142 |
|
integralOfChidt += dt2*chi; |
143 |
|
|
144 |
|
//save the old positions |
145 |
< |
for(i = 0; i < nAtoms; i++){ |
146 |
< |
atoms[i]->getPos(pos); |
145 |
> |
for(i = 0; i < integrableObjects.size(); i++){ |
146 |
> |
integrableObjects[i]->getPos(pos); |
147 |
|
for(j = 0; j < 3; j++) |
148 |
|
oldPos[i*3 + j] = pos[j]; |
149 |
|
} |
152 |
|
|
153 |
|
for(k = 0; k < 5; k ++){ |
154 |
|
|
155 |
< |
for(i =0 ; i < nAtoms; i++){ |
155 |
> |
for(i =0 ; i < integrableObjects.size(); i++){ |
156 |
|
|
157 |
< |
atoms[i]->getVel(vel); |
158 |
< |
atoms[i]->getPos(pos); |
157 |
> |
integrableObjects[i]->getVel(vel); |
158 |
> |
integrableObjects[i]->getPos(pos); |
159 |
|
|
160 |
|
this->getPosScale( pos, COM, i, sc ); |
161 |
|
|
162 |
|
for(j = 0; j < 3; j++) |
163 |
|
pos[j] = oldPos[i*3 + j] + dt*(vel[j] + sc[j]); |
164 |
|
|
165 |
< |
atoms[i]->setPos( pos ); |
165 |
> |
integrableObjects[i]->setPos( pos ); |
166 |
|
} |
167 |
|
|
168 |
|
if (nConstrained){ |
180 |
|
|
181 |
|
//new version of NPT |
182 |
|
int i, j, k; |
187 |
– |
DirectionalAtom* dAtom; |
183 |
|
double Tb[3], ji[3], sc[3]; |
184 |
|
double vel[3], frc[3]; |
185 |
|
double mass; |
186 |
|
|
187 |
|
// Set things up for the iteration: |
188 |
|
|
189 |
< |
for( i=0; i<nAtoms; i++ ){ |
189 |
> |
for( i=0; i<integrableObjects.size(); i++ ){ |
190 |
|
|
191 |
< |
atoms[i]->getVel( vel ); |
191 |
> |
integrableObjects[i]->getVel( vel ); |
192 |
|
|
193 |
|
for (j=0; j < 3; j++) |
194 |
|
oldVel[3*i + j] = vel[j]; |
195 |
|
|
196 |
< |
if( atoms[i]->isDirectional() ){ |
196 |
> |
if( integrableObjects[i]->isDirectional() ){ |
197 |
|
|
198 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
198 |
> |
integrableObjects[i]->getJ( ji ); |
199 |
|
|
205 |
– |
dAtom->getJ( ji ); |
206 |
– |
|
200 |
|
for (j=0; j < 3; j++) |
201 |
|
oldJi[3*i + j] = ji[j]; |
202 |
|
|
216 |
|
|
217 |
|
this->evolveChiB(); |
218 |
|
this->evolveEtaB(); |
219 |
+ |
this->calcVelScale(); |
220 |
|
|
221 |
< |
for( i=0; i<nAtoms; i++ ){ |
221 |
> |
for( i=0; i<integrableObjects.size(); i++ ){ |
222 |
|
|
223 |
< |
atoms[i]->getFrc( frc ); |
224 |
< |
atoms[i]->getVel(vel); |
223 |
> |
integrableObjects[i]->getFrc( frc ); |
224 |
> |
integrableObjects[i]->getVel(vel); |
225 |
|
|
226 |
< |
mass = atoms[i]->getMass(); |
226 |
> |
mass = integrableObjects[i]->getMass(); |
227 |
|
|
228 |
|
getVelScaleB( sc, i ); |
229 |
|
|
231 |
|
for (j=0; j < 3; j++) |
232 |
|
vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - sc[j]); |
233 |
|
|
234 |
< |
atoms[i]->setVel( vel ); |
234 |
> |
integrableObjects[i]->setVel( vel ); |
235 |
|
|
236 |
< |
if( atoms[i]->isDirectional() ){ |
236 |
> |
if( integrableObjects[i]->isDirectional() ){ |
237 |
|
|
244 |
– |
dAtom = (DirectionalAtom *)atoms[i]; |
245 |
– |
|
238 |
|
// get and convert the torque to body frame |
239 |
|
|
240 |
< |
dAtom->getTrq( Tb ); |
241 |
< |
dAtom->lab2Body( Tb ); |
240 |
> |
integrableObjects[i]->getTrq( Tb ); |
241 |
> |
integrableObjects[i]->lab2Body( Tb ); |
242 |
|
|
243 |
|
for (j=0; j < 3; j++) |
244 |
|
ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); |
245 |
|
|
246 |
< |
dAtom->setJ( ji ); |
246 |
> |
integrableObjects[i]->setJ( ji ); |
247 |
|
} |
248 |
|
} |
249 |
|
|
351 |
|
} |
352 |
|
|
353 |
|
// We need NkBT a lot, so just set it here: This is the RAW number |
354 |
< |
// of particles, so no subtraction or addition of constraints or |
354 |
> |
// of integrableObjects, so no subtraction or addition of constraints or |
355 |
|
// orientational degrees of freedom: |
356 |
|
|
357 |
< |
NkBT = (double)Nparticles * kB * targetTemp; |
357 |
> |
NkBT = (double)(info->getTotIntegrableObjects()) * kB * targetTemp; |
358 |
|
|
359 |
|
// fkBT is used because the thermostat operates on more degrees of freedom |
360 |
|
// than the barostat (when there are particles with orientational degrees |
361 |
< |
// of freedom). ndf = 3 * (n_atoms + n_oriented -1) - n_constraint - nZcons |
361 |
> |
// of freedom). |
362 |
|
|
363 |
< |
fkBT = (double)info->ndf * kB * targetTemp; |
363 |
> |
fkBT = (double)(info->getNDF()) * kB * targetTemp; |
364 |
|
|
365 |
|
tt2 = tauThermostat * tauThermostat; |
366 |
|
tb2 = tauBarostat * tauBarostat; |