9 |
|
|
10 |
|
#ifdef IS_MPI |
11 |
|
vector<double> gplusAll; |
12 |
< |
vector<double> currentGradAll; |
12 |
> |
vector<double> tempGradAll; |
13 |
|
|
14 |
< |
currentGradAll = getAllGrad(); |
14 |
> |
tempGradAll = getAllGrad(); |
15 |
|
#endif |
16 |
|
|
17 |
|
tempX = x; |
25 |
|
|
26 |
|
gplus = calcGrad(tempX); |
27 |
|
|
28 |
< |
hessian.Cloume(i) = (gplus - currentGrad) / hi; |
28 |
> |
//hessian.Colume(i) = (gplus - currentGrad) / hi; |
29 |
|
|
30 |
|
//restore tempX to its original value |
31 |
|
tempX[i] -= hi; |
54 |
|
|
55 |
|
} |
56 |
|
|
57 |
< |
hessian.Cloume(i) = (gplusAll - currentGradAll) / hi; |
57 |
> |
hessian.Cloume(i) = (gplusAll - tempGradAll) / hi; |
58 |
|
#endif |
59 |
|
|
60 |
|
} |
64 |
|
} |
65 |
|
|
66 |
|
double ConcreteNLMode1::calcF(){ |
67 |
+ |
|
68 |
+ |
currentF = (*objfunc)(currentX, currentGrad); |
69 |
+ |
numOfFunEval ++; |
70 |
|
|
71 |
+ |
return currentF; |
72 |
|
} |
73 |
|
|
74 |
|
double ConcreteNLMode1::calcF(const vector<double>& x){ |
75 |
|
|
76 |
+ |
vector<double> tempGrad(x.size()); |
77 |
+ |
|
78 |
+ |
double tempF; |
79 |
+ |
|
80 |
+ |
//tempF = (*objfunc)(x, tempGrad); |
81 |
+ |
numOfFunEval ++; |
82 |
+ |
|
83 |
+ |
return tempF; |
84 |
|
} |
85 |
|
|
86 |
|
vector<double> ConcreteNLMode1::calcGrad(){ |
87 |
+ |
|
88 |
+ |
currentF = (*objfunc)(currentX, currentGrad); |
89 |
|
|
90 |
+ |
return currentGrad; |
91 |
+ |
|
92 |
|
} |
93 |
|
|
94 |
< |
vector<double> ConcreteNLMode1::calcGrad(vector<double>& x){ |
94 |
> |
vector<double> ConcreteNLMode1::calcGrad(const vector<double>& x){ |
95 |
> |
vector<double> tempGrad; |
96 |
> |
//vector<double> tempGrad(x.szie()); |
97 |
|
|
98 |
+ |
double tempF; |
99 |
+ |
|
100 |
+ |
//tempF = (*objfunc)(x, tempGrad); |
101 |
+ |
|
102 |
+ |
return tempGrad; |
103 |
|
} |
104 |
|
|
105 |
+ |
/* |
106 |
|
SymMatrix ConcreteNLMode1::calcHessian(){ |
107 |
< |
|
107 |
> |
calcGrad(currentX); |
108 |
> |
return FiniteHessian(currentX); |
109 |
|
} |
110 |
|
|
111 |
|
SymMatrix ConcreteNLMode1::calcHessian(vector<double>& x){ |
112 |
< |
|
112 |
> |
return FiniteHessian(x); |
113 |
|
} |
114 |
+ |
*/ |