| 1 |
tim |
996 |
#include "NLModel.hpp"
|
| 2 |
|
|
|
| 3 |
|
|
|
| 4 |
|
|
/**
|
| 5 |
|
|
* calculate gradient using backward finite difference
|
| 6 |
|
|
* df(Xk)/dXi = (f(Xk) - f(Xk - h*ei)) /h
|
| 7 |
|
|
* where h is a small positive scalar and ei is the ith unit vector (ith column of the identity Matrix)
|
| 8 |
|
|
* h can be used for all paritial derivatives, but in some cases, it is essential to use a different value
|
| 9 |
|
|
* for each partial derivative
|
| 10 |
|
|
*/
|
| 11 |
|
|
vector<double> NLModel0::BackwardGrad(const vector<double>& x, double& fx, vector<double>& grad, const vector<double>& h){
|
| 12 |
|
|
vector<double> tempX = x;
|
| 13 |
|
|
vector<double> partialGrad;
|
| 14 |
|
|
double fminus;
|
| 15 |
|
|
double hi;
|
| 16 |
|
|
|
| 17 |
|
|
for(int i = 0; i < ndim; i++){
|
| 18 |
|
|
|
| 19 |
|
|
#ifndef IS_MPI
|
| 20 |
|
|
hi = copysign(h[i], tempX[i]);
|
| 21 |
|
|
|
| 22 |
|
|
//tempX[i] = x[i] + hi;
|
| 23 |
|
|
tempX[i] -= hi;
|
| 24 |
|
|
|
| 25 |
|
|
fminus = (*objfunc)(tempX);
|
| 26 |
|
|
|
| 27 |
|
|
partialGrad[i] = (fx - fminus) / hi;
|
| 28 |
|
|
|
| 29 |
|
|
//restore tempX to its original value
|
| 30 |
|
|
tempX[i] += hi;
|
| 31 |
|
|
#else
|
| 32 |
|
|
|
| 33 |
|
|
if(procMappingArray[i] == myRank){
|
| 34 |
|
|
|
| 35 |
|
|
hi = copysign(h[i], tempX[i]);
|
| 36 |
|
|
|
| 37 |
|
|
//tempX[i] = x[i] + hi;
|
| 38 |
|
|
tempX[i] -= hi;
|
| 39 |
|
|
}
|
| 40 |
|
|
|
| 41 |
|
|
fminus = (*objfunc)(tempX);
|
| 42 |
|
|
|
| 43 |
|
|
if(procMappingArray[i] == myRank){
|
| 44 |
|
|
partialGrad[i] = (fx - fminus) / hi;
|
| 45 |
|
|
|
| 46 |
|
|
//restore tempX to its original value
|
| 47 |
|
|
tempX[i] += hi;
|
| 48 |
|
|
}
|
| 49 |
|
|
|
| 50 |
|
|
#endif
|
| 51 |
|
|
}
|
| 52 |
|
|
|
| 53 |
|
|
return partialGrad;
|
| 54 |
|
|
}
|
| 55 |
|
|
|
| 56 |
|
|
/**
|
| 57 |
|
|
* calculate gradient using forward finite difference
|
| 58 |
|
|
* df(Xk)/dXi = (f(Xk+h*ei) - f(Xk)) /h
|
| 59 |
|
|
* where h is a small positive scalar and ei is the ith unit vector (ith column of the identity Matrix)
|
| 60 |
|
|
* h can be used for all paritial derivatives, but in some cases, it is essential to use a different value
|
| 61 |
|
|
* for each partial derivative
|
| 62 |
|
|
*/
|
| 63 |
|
|
vector<double> NLModel0::ForwardGrad(const vector<double>& x, double& fx, vector<double>& grad, const vector<double>& h){
|
| 64 |
|
|
vector<double> tempX = x;
|
| 65 |
|
|
vector<double> partialGrad;
|
| 66 |
|
|
double fplus;
|
| 67 |
|
|
double hi;
|
| 68 |
|
|
|
| 69 |
|
|
for(int i = 0; i < ndim; i++){
|
| 70 |
|
|
|
| 71 |
|
|
#ifndef IS_MPI
|
| 72 |
|
|
hi = copysign(h[i], tempX[i]);
|
| 73 |
|
|
|
| 74 |
|
|
//tempX[i] = x[i] + hi;
|
| 75 |
|
|
tempX[i] += hi;
|
| 76 |
|
|
|
| 77 |
|
|
fplus = (*objfunc)(tempX);
|
| 78 |
|
|
|
| 79 |
|
|
partialGrad[i] = (fplus - fx) / hi;
|
| 80 |
|
|
|
| 81 |
|
|
//restore tempX to its original value
|
| 82 |
|
|
tempX[i] -= hi;
|
| 83 |
|
|
#else
|
| 84 |
|
|
|
| 85 |
|
|
if(procMappingArray[i] == myRank){
|
| 86 |
|
|
|
| 87 |
|
|
hi = copysign(h[i], tempX[i]);
|
| 88 |
|
|
|
| 89 |
|
|
//tempX[i] = x[i] + hi;
|
| 90 |
|
|
tempX[i] += hi;
|
| 91 |
|
|
}
|
| 92 |
|
|
|
| 93 |
|
|
fminus = (*objfunc)(tempX);
|
| 94 |
|
|
|
| 95 |
|
|
if(procMappingArray[i] == myRank){
|
| 96 |
|
|
partialGrad[i] = (fx - fminus) / hi;
|
| 97 |
|
|
|
| 98 |
|
|
//restore tempX to its original value
|
| 99 |
|
|
tempX[i] -= hi;
|
| 100 |
|
|
}
|
| 101 |
|
|
|
| 102 |
|
|
#endif
|
| 103 |
|
|
}
|
| 104 |
|
|
|
| 105 |
|
|
return partialGrad;
|
| 106 |
|
|
}
|
| 107 |
|
|
|
| 108 |
|
|
/**
|
| 109 |
|
|
* calculate gradient using central finite difference
|
| 110 |
|
|
* df(Xk)/dXi = (f(Xk+h*ei) - f(Xk - h*ei )) /h
|
| 111 |
|
|
* where h is a small positive scalar and ei is the ith unit vector (ith column of the identity Matrix)
|
| 112 |
|
|
* h can be used for all paritial derivatives, but in some cases, it is essential to use a different value
|
| 113 |
|
|
* for each partial derivative
|
| 114 |
|
|
*/
|
| 115 |
|
|
vector<double> NLModel0::CentralGrad(const vector<double>& x, double& fx, vector<double>& grad, const vector<double>& h){
|
| 116 |
|
|
vector<double> tempX = x;
|
| 117 |
|
|
vector<double> partialGrad;
|
| 118 |
|
|
double fplus, fminus;
|
| 119 |
|
|
double hi;
|
| 120 |
|
|
|
| 121 |
|
|
for(int i = 0; i < ndim; i++){
|
| 122 |
|
|
|
| 123 |
|
|
#ifndef IS_MPI
|
| 124 |
|
|
hi = copysign(h[i], tempX[i]);
|
| 125 |
|
|
|
| 126 |
|
|
//tempX[i] = x[i] + hi
|
| 127 |
|
|
tempX[i] += hi;
|
| 128 |
|
|
|
| 129 |
|
|
fplus = (*objfunc)(tempX);
|
| 130 |
|
|
|
| 131 |
|
|
//tempX[i] = x[i] -hi
|
| 132 |
|
|
tempX[i] -= 2*hi;
|
| 133 |
|
|
fminus = (*objfunc)(tempX);
|
| 134 |
|
|
|
| 135 |
|
|
partialGrad[i] = (fplus + fminus) / (2*hi);
|
| 136 |
|
|
|
| 137 |
|
|
//restore tempX to its original value
|
| 138 |
|
|
tempX[i] += hi;
|
| 139 |
|
|
#else
|
| 140 |
|
|
|
| 141 |
|
|
if(procMappingArray[i] == myRank){
|
| 142 |
|
|
|
| 143 |
|
|
hi = copysign(h[i], tempX[i]);
|
| 144 |
|
|
|
| 145 |
|
|
//tempX[i] = x[i] + hi;
|
| 146 |
|
|
tempX[i] += hi;
|
| 147 |
|
|
}
|
| 148 |
|
|
|
| 149 |
|
|
fplus = (*objfunc)(tempX);
|
| 150 |
|
|
|
| 151 |
|
|
if(procMappingArray[i] == myRank){
|
| 152 |
|
|
partialGrad[i] = (fx - fminus) / hi;
|
| 153 |
|
|
|
| 154 |
|
|
//restore tempX to its original value
|
| 155 |
|
|
tempX[i] -= 2*hi;
|
| 156 |
|
|
}
|
| 157 |
|
|
|
| 158 |
|
|
fminus = (*objfunc)(tempX);
|
| 159 |
|
|
|
| 160 |
|
|
if(procMappingArray[i] == myRank){
|
| 161 |
|
|
partialGrad[i] = (fx - fminus) / (2*hi);
|
| 162 |
|
|
|
| 163 |
|
|
//restore tempX to its original value
|
| 164 |
|
|
tempX[i] -= hi;
|
| 165 |
|
|
}
|
| 166 |
|
|
#endif
|
| 167 |
|
|
}
|
| 168 |
|
|
|
| 169 |
|
|
return partialGrad;
|
| 170 |
|
|
}
|
| 171 |
|
|
|
| 172 |
|
|
/**
|
| 173 |
|
|
* calculate hessian using finite difference
|
| 174 |
|
|
* d2f(Xk)/dxidxj = (df(Xk+h*ej)/dXi + df(Xk - h*ej)/dXi) /2h
|
| 175 |
|
|
* where h is a small positive scalar and ei is the ith unit vector (ith column of the identity Matrix)
|
| 176 |
|
|
*/
|
| 177 |
|
|
SymMatrix NLModel0::FDHessian(vector<double>& h){
|
| 178 |
|
|
SymMatrix H(ndim);
|
| 179 |
|
|
|
| 180 |
|
|
for(int i = 0; i < ndim; i++){
|
| 181 |
|
|
|
| 182 |
|
|
for(int j = i + 1; j < ndim; j++){
|
| 183 |
|
|
|
| 184 |
|
|
}
|
| 185 |
|
|
}
|
| 186 |
|
|
|
| 187 |
|
|
}
|