| 3 |
|
|
| 4 |
|
#include <vector> |
| 5 |
|
#include <utility> |
| 6 |
+ |
#include <math.h> |
| 7 |
|
|
| 8 |
|
#include "SymMatrix.hpp" |
| 9 |
|
#include "Functor.hpp" |
| 10 |
+ |
#include "ConstraintList.hpp" |
| 11 |
|
|
| 12 |
|
using namespace std; |
| 13 |
|
|
| 14 |
|
|
| 15 |
< |
typedef enum FDType {backward, forward, central} ; |
| 15 |
> |
typedef enum {backward, forward, central} FDType; |
| 16 |
|
|
| 17 |
|
// special property of nonlinear object function |
| 18 |
< |
typedef enum NLOFProp{linear, quadratic, general}; |
| 18 |
> |
typedef enum {linear, quadratic, general} NLOFProp; |
| 19 |
|
|
| 20 |
|
//abstract class of nonlinear optimization model |
| 21 |
|
class NLModel{ |
| 24 |
|
virtual ~NLModel() { if (constraints != NULL) delete constraints;} |
| 25 |
|
|
| 26 |
|
virtual void setX(const vector<double>& x)= 0; |
| 27 |
+ |
virtual vector<double> getX() = 0; |
| 28 |
|
|
| 29 |
< |
virtual int getDim() const = 0; |
| 29 |
> |
virtual void setF(double f) = 0; |
| 30 |
> |
virtual double getF() = 0; |
| 31 |
|
|
| 32 |
+ |
virtual int getDim() {return ndim;} |
| 33 |
+ |
|
| 34 |
|
bool hasConstraints() { return constraints == NULL ? false : true;} |
| 35 |
< |
int getConsType() { return constrains->getConsType();} |
| 35 |
> |
int getConsType() { return constraints->getConsType();} |
| 36 |
|
|
| 37 |
|
virtual double calcF() = 0; |
| 38 |
|
virtual double calcF(const vector<double>& x) = 0; |
| 51 |
|
protected: |
| 52 |
|
ConstraintList* constraints; //constraints of nonlinear optimization model |
| 53 |
|
int numOfFunEval; //number of function evaluation |
| 54 |
+ |
int ndim; |
| 55 |
|
|
| 56 |
|
#ifdef IS_MPI |
| 57 |
|
bool mpiInitFlag; |
| 72 |
|
NLModel0(int dim, ConstraintList* cons = NULL); |
| 73 |
|
~NLModel0() {} |
| 74 |
|
|
| 75 |
< |
virtual void setX(const vector<double>& x); |
| 75 |
> |
virtual void setX(const vector<double>& x) {currentX = x;} |
| 76 |
> |
vector<double> getX() {return currentX;} |
| 77 |
|
|
| 78 |
+ |
void setF(double f) {currentF = f;} |
| 79 |
+ |
double getF() {return currentF;} |
| 80 |
+ |
|
| 81 |
|
//Using finite difference methods to approximate the gradient |
| 82 |
|
//It is inappropriate to apply these methods in large scale problem |
| 83 |
|
|
| 84 |
< |
vector<double> BackwardGrad(const vector<double>& x, double& fx, vector<double>& grad); |
| 85 |
< |
vector<double> ForwardGrad(const vector<double>& x, double& fx, vector<double>& grad); |
| 86 |
< |
vector<double> CentralGrad(const vector<double>& x, double& fx, vector<double>& grad); |
| 84 |
> |
vector<double> BackwardGrad(const vector<double>& x, double& fx, vector<double>& grad, const vector<double>& h); |
| 85 |
> |
vector<double> ForwardGrad(const vector<double>& x, double& fx, vector<double>& grad, const vector<double>& h); |
| 86 |
> |
vector<double> CentralGrad(const vector<double>& x, double& fx, vector<double>& grad, const vector<double>& h); |
| 87 |
|
|
| 88 |
|
//Using finite difference methods to approximate the hessian |
| 89 |
|
//It is inappropriate to apply this method in large scale problem |
| 90 |
< |
virtual SymMatrix FiniteHessian(vector<double>& x, double fx, vector<double>& h); |
| 91 |
< |
|
| 90 |
> |
//virtual SymMatrix FiniteHessian(vector<double>& x, double fx, vector<double>& h); |
| 91 |
> |
SymMatrix FiniteHessian(vector<double>& x, double fx, vector<double>& h); |
| 92 |
|
protected: |
| 93 |
|
|
| 94 |
|
FDType fdType; |
| 95 |
|
vector<double> currentX; |
| 96 |
< |
double curretF; |
| 96 |
> |
double currentF; |
| 97 |
|
}; |
| 98 |
|
|
| 99 |
|
//concrete class of nonlinear optimization model without derivatives |
| 106 |
|
ConcreteNLMode0(int dim, ConstraintList* cons = NULL); |
| 107 |
|
|
| 108 |
|
virtual double calcF(); |
| 109 |
< |
virtual double calcF(const vector<double>& x); |
| 109 |
> |
virtual double calcF(vector<double>& x); |
| 110 |
|
virtual vector<double> calcGrad(); |
| 111 |
|
virtual vector<double> calcGrad(vector<double>& x); |
| 112 |
|
virtual SymMatrix calcHessian() ; |
| 125 |
|
|
| 126 |
|
//Using finite difference methods to approximate the hessian |
| 127 |
|
//It is inappropriate to apply this method in large scale problem |
| 128 |
< |
virtual SymMatrix FiniteHessian(vector<double>& x, double fx, vector<double>& h); |
| 129 |
< |
|
| 128 |
> |
virtual SymMatrix FiniteHessian(vector<double>& x, vector<double>& h); |
| 129 |
> |
|
| 130 |
> |
void setGrad(vector<double>& grad) {currentGrad = grad;} |
| 131 |
> |
vector<double> getGrad() {return currentGrad;} |
| 132 |
|
protected: |
| 133 |
|
|
| 134 |
|
vector<double> currentGrad; |
| 143 |
|
ConcreteNLMode1(int dim, ConstraintList* cons = NULL); |
| 144 |
|
|
| 145 |
|
virtual double calcF(); |
| 146 |
< |
virtual double calcF(const vector<double>& x); |
| 146 |
> |
virtual double calcF(vector<double>& x); |
| 147 |
|
virtual vector<double> calcGrad(); |
| 148 |
< |
virtual vector<double> calcGrad(vector<double>& x); |
| 148 |
> |
virtual vector<double> calcGrad( vector<double>& x); |
| 149 |
|
virtual SymMatrix calcHessian() ; |
| 150 |
|
virtual SymMatrix calcHessian(vector<double>& x) ; |
| 151 |
|
|
| 172 |
|
ConcreteNLModel2(int dim, ConstraintList* cons = NULL); |
| 173 |
|
|
| 174 |
|
virtual double calcF(); |
| 175 |
< |
virtual double calcF(const vector<double>& x); |
| 175 |
> |
virtual double calcF(vector<double>& x); |
| 176 |
|
virtual vector<double> calcGrad(); |
| 177 |
|
virtual vector<double> calcGrad(vector<double>& x); |
| 178 |
|
virtual SymMatrix calcHessian() ; |