2 |
|
#define _NLMODEL_H_ |
3 |
|
|
4 |
|
#include <vector> |
5 |
+ |
#include <utility> |
6 |
+ |
#include <math.h> |
7 |
|
|
8 |
|
#include "SymMatrix.hpp" |
9 |
|
#include "Functor.hpp" |
10 |
+ |
#include "ConstraintList.hpp" |
11 |
|
|
12 |
|
using namespace std; |
13 |
|
|
11 |
– |
typedef enum FDType {backward, forward, central} ; |
14 |
|
|
15 |
< |
typedef enum {linear, quadratic, general}; |
15 |
> |
typedef enum {backward, forward, central} FDType; |
16 |
|
|
17 |
+ |
// special property of nonlinear object function |
18 |
+ |
typedef enum {linear, quadratic, general} NLOFProp; |
19 |
+ |
|
20 |
|
//abstract class of nonlinear optimization model |
21 |
|
class NLModel{ |
22 |
|
public: |
23 |
|
NLModel(ConstraintList* cons) {constraints = cons;} |
24 |
|
virtual ~NLModel() { if (constraints != NULL) delete constraints;} |
25 |
+ |
|
26 |
|
virtual void setX(const vector<double>& x)= 0; |
27 |
|
|
28 |
< |
virtual void setF(const vector<double>& fx)= 0; |
28 |
> |
virtual int getDim() {return ndim;} |
29 |
|
|
24 |
– |
virtual int getDim() const = 0; |
25 |
– |
|
30 |
|
bool hasConstraints() { return constraints == NULL ? false : true;} |
31 |
< |
int getConsType() { return constrains->getConsType();} |
31 |
> |
int getConsType() { return constraints->getConsType();} |
32 |
|
|
33 |
|
virtual double calcF() = 0; |
34 |
|
virtual double calcF(const vector<double>& x) = 0; |
39 |
|
|
40 |
|
#ifdef IS_MPI |
41 |
|
void setMPIINITFunctor(MPIINITFunctor* func); |
42 |
+ |
int getLocalDim() {return localDim;} |
43 |
+ |
|
44 |
+ |
virtual void update(); //a hook function to load balancing |
45 |
|
#endif |
46 |
|
|
47 |
|
protected: |
48 |
|
ConstraintList* constraints; //constraints of nonlinear optimization model |
49 |
|
int numOfFunEval; //number of function evaluation |
50 |
+ |
int ndim; |
51 |
|
|
52 |
|
#ifdef IS_MPI |
53 |
|
bool mpiInitFlag; |
54 |
+ |
int myRank; //rank of current node |
55 |
+ |
int numOfProc; // number of processors |
56 |
|
MPIINITFunctor * mpiInitFunc; |
57 |
+ |
|
58 |
|
int localDim; |
59 |
+ |
vector<int> procMappingArray; |
60 |
+ |
int beginGlobalIndex; |
61 |
|
#endif |
62 |
|
}; |
63 |
|
|
68 |
|
NLModel0(int dim, ConstraintList* cons = NULL); |
69 |
|
~NLModel0() {} |
70 |
|
|
71 |
< |
protected: |
71 |
> |
virtual void setX(const vector<double>& x); |
72 |
|
|
73 |
|
//Using finite difference methods to approximate the gradient |
74 |
|
//It is inappropriate to apply these methods in large scale problem |
75 |
|
|
76 |
< |
vector<double> BackwardGrad(const vector<double>& x, double& fx, vector<double>& grad); |
77 |
< |
vector<double> ForwardGrad(const vector<double>& x, double& fx, vector<double>& grad); |
78 |
< |
vector<double> CentralGrad(const vector<double>& x, double& fx, vector<double>& grad); |
76 |
> |
vector<double> BackwardGrad(const vector<double>& x, double& fx, vector<double>& grad, const vector<double>& h); |
77 |
> |
vector<double> ForwardGrad(const vector<double>& x, double& fx, vector<double>& grad, const vector<double>& h); |
78 |
> |
vector<double> CentralGrad(const vector<double>& x, double& fx, vector<double>& grad, const vector<double>& h); |
79 |
|
|
80 |
|
//Using finite difference methods to approximate the hessian |
81 |
|
//It is inappropriate to apply this method in large scale problem |
82 |
< |
virtual SymMatrix FDHessian(vector<double>& sx); |
82 |
> |
//virtual SymMatrix FiniteHessian(vector<double>& x, double fx, vector<double>& h); |
83 |
|
|
84 |
+ |
protected: |
85 |
+ |
|
86 |
|
FDType fdType; |
87 |
|
vector<double> currentX; |
88 |
+ |
double currentF; |
89 |
|
}; |
90 |
|
|
91 |
+ |
//concrete class of nonlinear optimization model without derivatives |
92 |
+ |
|
93 |
+ |
class ConcreteNLMode0 : public NLModel0{ |
94 |
+ |
|
95 |
+ |
public: |
96 |
+ |
|
97 |
+ |
ConcreteNLMode0(int dim, ObjFunctor0* func , ConstraintList* cons = NULL); |
98 |
+ |
ConcreteNLMode0(int dim, ConstraintList* cons = NULL); |
99 |
+ |
|
100 |
+ |
virtual double calcF(); |
101 |
+ |
virtual double calcF(const vector<double>& x); |
102 |
+ |
virtual vector<double> calcGrad(); |
103 |
+ |
virtual vector<double> calcGrad(vector<double>& x); |
104 |
+ |
virtual SymMatrix calcHessian() ; |
105 |
+ |
virtual SymMatrix calcHessian(vector<double>& x) ; |
106 |
+ |
|
107 |
+ |
protected: |
108 |
+ |
|
109 |
+ |
ObjFunctor0* objfunc; |
110 |
+ |
|
111 |
+ |
}; |
112 |
+ |
|
113 |
|
//abstract class of nonlinear optimization model with first derivatives |
114 |
|
class NLModel1 : public NLModel0{ |
115 |
+ |
|
116 |
|
public: |
117 |
|
|
118 |
|
//Using finite difference methods to approximate the hessian |
119 |
|
//It is inappropriate to apply this method in large scale problem |
120 |
< |
virtual SymMatrix FDHessian(vector<double>& sx); |
120 |
> |
virtual SymMatrix FiniteHessian(vector<double>& x, vector<double>& h); |
121 |
|
|
122 |
|
protected: |
123 |
+ |
|
124 |
|
vector<double> currentGrad; |
125 |
|
}; |
126 |
|
|
127 |
< |
class NLF1 : NLModel1{ |
127 |
> |
//concrete class of nonlinear optimization model with first derivatives |
128 |
> |
class ConcreteNLMode1 : NLModel1{ |
129 |
> |
|
130 |
|
public: |
131 |
< |
NLModel1(int dim, ObjFunctor1* func , ConstraintList* cons = NULL); |
132 |
< |
NLModel1(int dim, ConstraintList* cons = NULL); |
131 |
> |
|
132 |
> |
ConcreteNLMode1(int dim, ObjFunctor1* func , ConstraintList* cons = NULL); |
133 |
> |
ConcreteNLMode1(int dim, ConstraintList* cons = NULL); |
134 |
|
|
135 |
|
virtual double calcF(); |
136 |
|
virtual double calcF(const vector<double>& x); |
137 |
|
virtual vector<double> calcGrad(); |
138 |
< |
virtual vector<double> calcGrad(vector<double>& x); |
138 |
> |
virtual vector<double> calcGrad(const vector<double>& x); |
139 |
|
virtual SymMatrix calcHessian() ; |
140 |
|
virtual SymMatrix calcHessian(vector<double>& x) ; |
141 |
|
|
142 |
|
protected: |
143 |
+ |
|
144 |
|
ObjFunctor1* objfunc; |
145 |
|
}; |
146 |
|
|
103 |
– |
|
147 |
|
/* |
148 |
+ |
//abstract class of nonlinear optimization model with second derivatives |
149 |
|
class NLModel2 : public NLModel1{ |
150 |
|
public: |
151 |
+ |
|
152 |
+ |
protected: |
153 |
+ |
SymMatrix currentHessian; |
154 |
|
|
155 |
< |
NLModel2(int dim, ObjFunctor2* func , ConstraintList* cons = NULL); |
156 |
< |
~NLModel2() {} |
155 |
> |
}; |
156 |
> |
|
157 |
> |
//concrete class of nonlinear optimization model with second derivatives |
158 |
> |
class ConcreteNLModel2 : public NLModel2{ |
159 |
> |
public: |
160 |
> |
|
161 |
> |
ConcreteNLModel2(int dim, ObjFunctor2* func , ConstraintList* cons = NULL); |
162 |
> |
ConcreteNLModel2(int dim, ConstraintList* cons = NULL); |
163 |
|
|
164 |
|
virtual double calcF(); |
165 |
|
virtual double calcF(const vector<double>& x); |
170 |
|
|
171 |
|
protected: |
172 |
|
|
120 |
– |
SymMatrix hessian; |
173 |
|
ObjFunctor2* objFunc; |
174 |
|
}; |
175 |
|
*/ |