12 |
|
myBonds = NULL; |
13 |
|
myBends = NULL; |
14 |
|
myTorsions = NULL; |
15 |
< |
|
15 |
> |
hasMassRatio = false; |
16 |
|
} |
17 |
|
|
18 |
|
Molecule::~Molecule( void ){ |
58 |
|
myRigidBodies = theInit.myRigidBodies; |
59 |
|
|
60 |
|
myIntegrableObjects = theInit.myIntegrableObjects; |
61 |
< |
|
61 |
> |
|
62 |
> |
for (int i = 0; i < myRigidBodies.size(); i++) |
63 |
> |
myRigidBodies[i]->calcRefCoords(); |
64 |
> |
|
65 |
|
} |
66 |
|
|
67 |
|
void Molecule::calcForces( void ){ |
68 |
|
|
69 |
|
int i; |
70 |
+ |
double com[3]; |
71 |
|
|
72 |
|
for(i=0; i<myRigidBodies.size(); i++) { |
73 |
|
myRigidBodies[i]->updateAtoms(); |
74 |
|
} |
75 |
|
|
76 |
+ |
//the mass ratio will never change during the simulation. Thus, we could |
77 |
+ |
//just calculate it at the begining of the simulation |
78 |
+ |
if (!hasMassRatio){ |
79 |
+ |
double totMass = getTotalMass(); |
80 |
+ |
for(int i = 0; i < nAtoms; i ++) |
81 |
+ |
myAtoms[i]->setMassRatio(myAtoms[i]->getMass()/totMass); |
82 |
+ |
hasMassRatio = true; |
83 |
+ |
} |
84 |
+ |
|
85 |
+ |
//calculate the center of mass of the molecule |
86 |
+ |
getCOM(com); |
87 |
+ |
for(int i = 0; i < nAtoms; i ++) |
88 |
+ |
myAtoms[i]->setRc(com); |
89 |
+ |
|
90 |
+ |
|
91 |
|
for(i=0; i<nBonds; i++){ |
92 |
|
myBonds[i]->calc_forces(); |
93 |
|
} |
109 |
|
|
110 |
|
int i; |
111 |
|
double myPot = 0.0; |
112 |
+ |
|
113 |
+ |
for(i=0; i<myRigidBodies.size(); i++) { |
114 |
+ |
myRigidBodies[i]->updateAtoms(); |
115 |
+ |
} |
116 |
|
|
117 |
|
for(i=0; i<nBonds; i++){ |
118 |
|
myPot += myBonds[i]->get_potential(); |
151 |
|
double aPos[3]; |
152 |
|
int i, j; |
153 |
|
|
154 |
< |
for(i=0; i<nAtoms; i++) { |
155 |
< |
if(myAtoms[i] != NULL ) { |
154 |
> |
for(i=0; i<myIntegrableObjects.size(); i++) { |
155 |
> |
if(myIntegrableObjects[i] != NULL ) { |
156 |
|
|
157 |
< |
myAtoms[i]->getPos( aPos ); |
157 |
> |
myIntegrableObjects[i]->getPos( aPos ); |
158 |
|
|
159 |
|
for (j=0; j< 3; j++) |
160 |
|
aPos[j] += delta[j]; |
161 |
|
|
162 |
< |
myAtoms[i]->setPos( aPos ); |
162 |
> |
myIntegrableObjects[i]->setPos( aPos ); |
163 |
|
} |
164 |
|
} |
165 |
|
|
192 |
|
|
193 |
|
mtot = 0.0; |
194 |
|
|
195 |
< |
for (i=0; i < nAtoms; i++) { |
196 |
< |
if (myAtoms[i] != NULL) { |
195 |
> |
for (i=0; i < myIntegrableObjects.size(); i++) { |
196 |
> |
if (myIntegrableObjects[i] != NULL) { |
197 |
|
|
198 |
< |
mass = myAtoms[i]->getMass(); |
198 |
> |
mass = myIntegrableObjects[i]->getMass(); |
199 |
|
mtot += mass; |
200 |
|
|
201 |
< |
myAtoms[i]->getPos( aPos ); |
201 |
> |
myIntegrableObjects[i]->getPos( aPos ); |
202 |
|
|
203 |
|
for( j = 0; j < 3; j++) |
204 |
|
COM[j] += aPos[j] * mass; |
222 |
|
|
223 |
|
mtot = 0.0; |
224 |
|
|
225 |
< |
for (i=0; i < nAtoms; i++) { |
226 |
< |
if (myAtoms[i] != NULL) { |
225 |
> |
for (i=0; i < myIntegrableObjects.size(); i++) { |
226 |
> |
if (myIntegrableObjects[i] != NULL) { |
227 |
|
|
228 |
< |
mass = myAtoms[i]->getMass(); |
228 |
> |
mass = myIntegrableObjects[i]->getMass(); |
229 |
|
mtot += mass; |
230 |
|
|
231 |
< |
myAtoms[i]->getVel(aVel); |
231 |
> |
myIntegrableObjects[i]->getVel(aVel); |
232 |
|
|
233 |
|
for (j=0; j<3; j++) |
234 |
|
COMvel[j] += aVel[j]*mass; |
245 |
|
|
246 |
|
double Molecule::getTotalMass() |
247 |
|
{ |
248 |
< |
int natoms; |
226 |
< |
Atom** atoms; |
248 |
> |
|
249 |
|
double totalMass; |
250 |
|
|
229 |
– |
natoms = getNAtoms(); |
230 |
– |
atoms = getMyAtoms(); |
251 |
|
totalMass = 0; |
252 |
< |
for(int i =0; i < natoms; i++){ |
253 |
< |
totalMass += atoms[i]->getMass(); |
252 |
> |
for(int i =0; i < myIntegrableObjects.size(); i++){ |
253 |
> |
totalMass += myIntegrableObjects[i]->getMass(); |
254 |
|
} |
255 |
|
|
256 |
|
return totalMass; |