1 |
|
#include "Minimizer1D.hpp" |
2 |
< |
void Minimizer1D::Minimize(vector<double>& direction), double left, double right); { |
3 |
< |
setDirection(direction); |
4 |
< |
setRange(left,right); |
5 |
< |
minimize(); |
2 |
> |
#include "math.h" |
3 |
> |
#include "Utility.hpp" |
4 |
> |
GoldenSectionMinimizer::GoldenSectionMinimizer(NLModel* nlp) |
5 |
> |
:Minimizer1D(nlp){ |
6 |
> |
setName("GoldenSection"); |
7 |
|
} |
8 |
|
|
9 |
< |
int Minimizer1D::checkConvergence(){ |
9 |
> |
int GoldenSectionMinimizer::checkConvergence(){ |
10 |
|
|
11 |
|
if ((rightVar - leftVar) < stepTol) |
12 |
< |
return |
12 |
> |
return 1; |
13 |
|
else |
14 |
|
return -1; |
15 |
|
} |
17 |
|
void GoldenSectionMinimizer::minimize(){ |
18 |
|
vector<double> tempX; |
19 |
|
vector <double> currentX; |
20 |
< |
|
20 |
> |
double curF; |
21 |
|
const double goldenRatio = 0.618034; |
22 |
|
|
23 |
< |
currentX = model->getX(); |
24 |
< |
|
23 |
> |
tempX = currentX = model->getX(); |
24 |
> |
model->calcF(); |
25 |
> |
curF = model->getF(); |
26 |
> |
|
27 |
|
alpha = leftVar + (1 - goldenRatio) * (rightVar - leftVar); |
28 |
|
beta = leftVar + goldenRatio * (rightVar - leftVar); |
29 |
|
|
30 |
< |
tempX = currentX + direction * alpha; |
30 |
> |
for (int i = 0; i < tempX.size(); i ++) |
31 |
> |
tempX[i] = currentX[i] + direction[i] * alpha; |
32 |
> |
|
33 |
|
fAlpha = model->calcF(tempX); |
34 |
|
|
35 |
< |
tempX = currentX + direction * beta; |
35 |
> |
for (int i = 0; i < tempX.size(); i ++) |
36 |
> |
tempX[i] = currentX[i] + direction[i] * beta; |
37 |
> |
|
38 |
|
fBeta = model->calcF(tempX); |
39 |
|
|
40 |
|
for(currentIter = 0; currentIter < maxIteration; currentIter++){ |
41 |
|
|
42 |
|
if (checkConvergence() > 0){ |
43 |
+ |
|
44 |
+ |
//quick hack |
45 |
+ |
if (fMinVar > curF) { |
46 |
+ |
fMinVar = curF; |
47 |
+ |
minVar = 0; |
48 |
+ |
minStatus = MINSTATUS_ERROR; |
49 |
+ |
} |
50 |
+ |
|
51 |
|
minStatus = MINSTATUS_CONVERGE; |
52 |
|
return; |
53 |
|
} |
55 |
|
if (fAlpha > fBeta){ |
56 |
|
leftVar = alpha; |
57 |
|
alpha = beta; |
58 |
+ |
|
59 |
|
beta = leftVar + goldenRatio * (rightVar - leftVar); |
60 |
|
|
61 |
< |
tempX = currentX + beta * direction; |
62 |
< |
|
63 |
< |
prevMinVar = minVar; |
64 |
< |
fPrevMinVar = fMinVar; |
61 |
> |
for (int i = 0; i < tempX.size(); i ++) |
62 |
> |
tempX[i] = currentX[i] + direction[i] * beta; |
63 |
> |
fAlpha = fBeta; |
64 |
> |
fBeta = model->calcF(tempX); |
65 |
|
|
66 |
+ |
prevMinVar = alpha; |
67 |
+ |
fPrevMinVar = fAlpha; |
68 |
|
minVar = beta; |
69 |
< |
fMinVar = model->calcF(tempX); |
52 |
< |
|
69 |
> |
fMinVar = fBeta; |
70 |
|
} |
71 |
|
else{ |
72 |
|
rightVar = beta; |
73 |
|
beta = alpha; |
74 |
+ |
|
75 |
|
alpha = leftVar + (1 - goldenRatio) * (rightVar - leftVar); |
76 |
|
|
77 |
< |
tempX = currentX + alpha * direction; |
77 |
> |
for (int i = 0; i < tempX.size(); i ++) |
78 |
> |
tempX[i] = currentX[i] + direction[i] * alpha; |
79 |
|
|
80 |
< |
prevMinVar = minVar; |
81 |
< |
fPrevMinVar = fMinVar; |
82 |
< |
|
80 |
> |
fBeta = fAlpha; |
81 |
> |
fAlpha = model->calcF(tempX); |
82 |
> |
|
83 |
> |
prevMinVar = beta; |
84 |
> |
fPrevMinVar = fBeta; |
85 |
> |
|
86 |
|
minVar = alpha; |
87 |
< |
fMinVar = model->calcF(tempX); |
87 |
> |
fMinVar = fAlpha; |
88 |
|
} |
89 |
|
|
90 |
|
} |
91 |
|
|
92 |
+ |
cerr << "GoldenSectionMinimizer Warning : can not reach tolerance" << endl; |
93 |
|
minStatus = MINSTATUS_MAXITER; |
94 |
|
|
95 |
|
} |
96 |
|
|
97 |
< |
/* |
98 |
< |
* |
97 |
> |
/** |
98 |
> |
* Brent's method is a root-finding algorithm which combines root bracketing, interval bisection, |
99 |
> |
* and inverse quadratic interpolation. |
100 |
|
*/ |
101 |
+ |
BrentMinimizer::BrentMinimizer(NLModel* nlp) |
102 |
+ |
:Minimizer1D(nlp){ |
103 |
+ |
setName("Brent"); |
104 |
+ |
} |
105 |
|
|
106 |
+ |
void BrentMinimizer::minimize(vector<double>& direction, double left, double right){ |
107 |
+ |
|
108 |
+ |
//brent algorithm ascending order |
109 |
+ |
|
110 |
+ |
if (left > right) |
111 |
+ |
setRange(right, left); |
112 |
+ |
else |
113 |
+ |
setRange(left, right); |
114 |
+ |
|
115 |
+ |
setDirection(direction); |
116 |
+ |
|
117 |
+ |
minimize(); |
118 |
+ |
} |
119 |
|
void BrentMinimizer::minimize(){ |
120 |
|
|
121 |
< |
for(currentIter = 0; currentIter < maxIteration; currentIter){ |
121 |
> |
double fu, fv, fw; |
122 |
> |
double p, q, r; |
123 |
> |
double u, v, w; |
124 |
> |
double d; |
125 |
> |
double e; |
126 |
> |
double etemp; |
127 |
> |
double stepTol2; |
128 |
> |
double fLeftVar, fRightVar; |
129 |
> |
const double goldenRatio = 0.3819660; |
130 |
> |
vector<double> tempX, currentX; |
131 |
> |
|
132 |
> |
stepTol2 = 2 * stepTol; |
133 |
|
|
134 |
+ |
e = 0; |
135 |
+ |
d = 0; |
136 |
|
|
137 |
+ |
currentX = model->getX(); |
138 |
+ |
tempX.resize(currentX.size()); |
139 |
|
|
140 |
+ |
|
141 |
|
|
142 |
+ |
|
143 |
+ |
for (int i = 0; i < tempX.size(); i ++) |
144 |
+ |
tempX[i] = currentX[i] + direction[i] * leftVar; |
145 |
+ |
|
146 |
+ |
fLeftVar = model->calcF(tempX); |
147 |
+ |
|
148 |
+ |
for (int i = 0; i < tempX.size(); i ++) |
149 |
+ |
tempX[i] = currentX[i] + direction[i] * rightVar; |
150 |
+ |
|
151 |
+ |
fRightVar = model->calcF(tempX); |
152 |
+ |
|
153 |
+ |
// find an interior point left < interior < right which satisfy f(left) > f(interior) and f(right) > f(interior) |
154 |
+ |
|
155 |
+ |
bracket(minVar, fMinVar, leftVar, fLeftVar, rightVar, fRightVar); |
156 |
+ |
|
157 |
+ |
if(fRightVar < fLeftVar) { |
158 |
+ |
prevMinVar = rightVar; |
159 |
+ |
fPrevMinVar = fRightVar; |
160 |
+ |
v = leftVar; |
161 |
+ |
fv = fLeftVar; |
162 |
|
} |
163 |
+ |
else { |
164 |
+ |
prevMinVar = leftVar; |
165 |
+ |
fPrevMinVar = fLeftVar; |
166 |
+ |
v = rightVar; |
167 |
+ |
fv = fRightVar; |
168 |
+ |
} |
169 |
+ |
|
170 |
+ |
minVar = rightVar+ goldenRatio * (rightVar - leftVar); |
171 |
|
|
172 |
+ |
for (int i = 0; i < tempX.size(); i ++) |
173 |
+ |
tempX[i] = currentX[i] + direction[i] * minVar; |
174 |
|
|
175 |
+ |
fMinVar = model->calcF(tempX); |
176 |
+ |
|
177 |
+ |
prevMinVar = v = minVar; |
178 |
+ |
fPrevMinVar = fv = fMinVar; |
179 |
+ |
midVar = (leftVar + rightVar) / 2; |
180 |
+ |
|
181 |
+ |
for(currentIter = 0; currentIter < maxIteration; currentIter++){ |
182 |
+ |
|
183 |
+ |
//construct a trial parabolic fit |
184 |
+ |
if (fabs(e) > stepTol){ |
185 |
+ |
|
186 |
+ |
r = (minVar - prevMinVar) * (fMinVar - fv); |
187 |
+ |
q = (minVar - v) * (fMinVar - fPrevMinVar); |
188 |
+ |
p = (minVar - v) *q -(minVar - prevMinVar)*r; |
189 |
+ |
q = 2.0 *(q-r); |
190 |
+ |
|
191 |
+ |
if (q > 0.0) |
192 |
+ |
p = -p; |
193 |
+ |
|
194 |
+ |
q = fabs(q); |
195 |
+ |
|
196 |
+ |
etemp = e; |
197 |
+ |
e = d; |
198 |
+ |
|
199 |
+ |
if(fabs(p) >= fabs(0.5*q*etemp) || p <= q*(leftVar - minVar) || p >= q*(rightVar - minVar)){ |
200 |
+ |
//reject parabolic fit and use golden section step instead |
201 |
+ |
e = minVar >= midVar ? leftVar - minVar : rightVar - minVar; |
202 |
+ |
d = goldenRatio * e; |
203 |
+ |
} |
204 |
+ |
else{ |
205 |
+ |
|
206 |
+ |
//take the parabolic step |
207 |
+ |
d = p/q; |
208 |
+ |
u = minVar + d; |
209 |
+ |
if ( u - leftVar < stepTol2 || rightVar - u < stepTol2) |
210 |
+ |
d = midVar > minVar ? stepTol : - stepTol; |
211 |
+ |
} |
212 |
+ |
|
213 |
+ |
} |
214 |
+ |
else{ |
215 |
+ |
e = minVar >= midVar ? leftVar -minVar : rightVar-minVar; |
216 |
+ |
d = goldenRatio * e; |
217 |
+ |
} |
218 |
+ |
|
219 |
+ |
u = fabs(d) >= stepTol ? minVar + d : minVar + copysign(stepTol, d); |
220 |
+ |
|
221 |
+ |
for (int i = 0; i < tempX.size(); i ++) |
222 |
+ |
tempX[i] = currentX[i] + direction[i] * u; |
223 |
+ |
|
224 |
+ |
fu = model->calcF(tempX); |
225 |
+ |
|
226 |
+ |
if(fu <= fMinVar){ |
227 |
+ |
|
228 |
+ |
if(u >= minVar) |
229 |
+ |
leftVar = minVar; |
230 |
+ |
else |
231 |
+ |
rightVar = minVar; |
232 |
+ |
|
233 |
+ |
v = prevMinVar; |
234 |
+ |
prevMinVar = minVar; |
235 |
+ |
minVar = u; |
236 |
+ |
|
237 |
+ |
fv = fPrevMinVar; |
238 |
+ |
fPrevMinVar = fMinVar; |
239 |
+ |
fMinVar = fu; |
240 |
+ |
|
241 |
+ |
} |
242 |
+ |
else{ |
243 |
+ |
if (u < minVar) leftVar = u; |
244 |
+ |
else rightVar= u; |
245 |
+ |
|
246 |
+ |
if(fu <= fPrevMinVar || prevMinVar == minVar) { |
247 |
+ |
v = prevMinVar; |
248 |
+ |
fv = fPrevMinVar; |
249 |
+ |
prevMinVar = u; |
250 |
+ |
fPrevMinVar = fu; |
251 |
+ |
} |
252 |
+ |
else if ( fu <= fv || v == minVar || v == prevMinVar ) { |
253 |
+ |
v = u; |
254 |
+ |
fv = fu; |
255 |
+ |
} |
256 |
+ |
} |
257 |
+ |
|
258 |
+ |
midVar = (leftVar + rightVar) /2; |
259 |
+ |
|
260 |
+ |
if (checkConvergence() > 0){ |
261 |
+ |
minStatus = MINSTATUS_CONVERGE; |
262 |
+ |
return; |
263 |
+ |
} |
264 |
+ |
|
265 |
+ |
} |
266 |
+ |
|
267 |
+ |
|
268 |
|
minStatus = MINSTATUS_MAXITER; |
269 |
< |
return; |
269 |
> |
return; |
270 |
|
} |
271 |
+ |
|
272 |
+ |
int BrentMinimizer::checkConvergence(){ |
273 |
+ |
|
274 |
+ |
if (fabs(minVar - midVar) < stepTol) |
275 |
+ |
return 1; |
276 |
+ |
else |
277 |
+ |
return -1; |
278 |
+ |
} |
279 |
+ |
|
280 |
+ |
/******************************************************* |
281 |
+ |
* Bracketing a minimum of a real function Y=F(X) * |
282 |
+ |
* using MNBRAK subroutine * |
283 |
+ |
* ---------------------------------------------------- * |
284 |
+ |
* REFERENCE: "Numerical recipes, The Art of Scientific * |
285 |
+ |
* Computing by W.H. Press, B.P. Flannery, * |
286 |
+ |
* S.A. Teukolsky and W.T. Vetterling, * |
287 |
+ |
* Cambridge university Press, 1986". * |
288 |
+ |
* ---------------------------------------------------- * |
289 |
+ |
* We have different situation here, we want to limit the |
290 |
+ |
********************************************************/ |
291 |
+ |
void BrentMinimizer::bracket(double& cx, double& fc, double& ax, double& fa, double& bx, double& fb){ |
292 |
+ |
vector<double> currentX; |
293 |
+ |
vector<double> tempX; |
294 |
+ |
double u, r, q; |
295 |
+ |
double fu; |
296 |
+ |
double ulim; |
297 |
+ |
const double TINY = 1.0e-20; |
298 |
+ |
const double GLIMIT = 100.0; |
299 |
+ |
const double GoldenRatio = 0.618034; |
300 |
+ |
const int MAXBRACKETITER = 100; |
301 |
+ |
currentX = model->getX(); |
302 |
+ |
tempX.resize(currentX.size()); |
303 |
+ |
|
304 |
+ |
if (fb > fa){ |
305 |
+ |
swap(fa, fb); |
306 |
+ |
swap(ax, bx); |
307 |
+ |
} |
308 |
+ |
|
309 |
+ |
cx = bx + GoldenRatio * (bx - ax); |
310 |
+ |
|
311 |
+ |
fc = model->calcF(tempX); |
312 |
+ |
|
313 |
+ |
for(int k = 0; k < MAXBRACKETITER && (fb < fc); k++){ |
314 |
+ |
|
315 |
+ |
r = (bx - ax) * (fb -fc); |
316 |
+ |
q = (bx - cx) * (fb - fa); |
317 |
+ |
u = bx -((bx - cx)*q - (bx-ax)*r)/(2.0 * copysign(max(fabs(q-r), TINY) ,q-r)); |
318 |
+ |
ulim = bx + GLIMIT *(cx - bx); |
319 |
+ |
|
320 |
+ |
for (int i = 0; i < tempX.size(); i ++) |
321 |
+ |
tempX[i] = currentX[i] + direction[i] * u; |
322 |
+ |
|
323 |
+ |
if ((bx -u) * (u -cx) > 0){ |
324 |
+ |
fu = model->calcF(tempX); |
325 |
+ |
|
326 |
+ |
if (fu < fc){ |
327 |
+ |
ax = bx; |
328 |
+ |
bx = u; |
329 |
+ |
fa = fb; |
330 |
+ |
fb = fu; |
331 |
+ |
} |
332 |
+ |
else if (fu > fb){ |
333 |
+ |
cx = u; |
334 |
+ |
fc = fu; |
335 |
+ |
return; |
336 |
+ |
} |
337 |
+ |
} |
338 |
+ |
else if ((cx - u)* (u - ulim) > 0.0){ |
339 |
+ |
|
340 |
+ |
fu = model->calcF(tempX); |
341 |
+ |
|
342 |
+ |
if (fu < fc){ |
343 |
+ |
bx = cx; |
344 |
+ |
cx = u; |
345 |
+ |
u = cx + GoldenRatio * (cx - bx); |
346 |
+ |
|
347 |
+ |
fb = fc; |
348 |
+ |
fc = fu; |
349 |
+ |
|
350 |
+ |
for (int i = 0; i < tempX.size(); i ++) |
351 |
+ |
tempX[i] = currentX[i] + direction[i] * u; |
352 |
+ |
|
353 |
+ |
fu = model->calcF(tempX); |
354 |
+ |
} |
355 |
+ |
} |
356 |
+ |
else if ((u-ulim) * (ulim - cx) >= 0.0){ |
357 |
+ |
u = ulim; |
358 |
+ |
|
359 |
+ |
fu = model->calcF(tempX); |
360 |
+ |
|
361 |
+ |
} |
362 |
+ |
else { |
363 |
+ |
u = cx + GoldenRatio * (cx -bx); |
364 |
+ |
|
365 |
+ |
fu = model->calcF(tempX); |
366 |
+ |
} |
367 |
+ |
|
368 |
+ |
ax = bx; |
369 |
+ |
bx = cx; |
370 |
+ |
cx = u; |
371 |
+ |
|
372 |
+ |
fa = fb; |
373 |
+ |
fb = fc; |
374 |
+ |
fc = fu; |
375 |
+ |
|
376 |
+ |
} |
377 |
+ |
|
378 |
+ |
} |
379 |
+ |
|