| 1 |
#include "Minimizer1D.hpp"
|
| 2 |
#include "math.h"
|
| 3 |
#include "Utility.hpp"
|
| 4 |
GoldenSectionMinimizer::GoldenSectionMinimizer(NLModel* nlp)
|
| 5 |
:Minimizer1D(nlp){
|
| 6 |
setName("GoldenSection");
|
| 7 |
}
|
| 8 |
|
| 9 |
int GoldenSectionMinimizer::checkConvergence(){
|
| 10 |
|
| 11 |
if ((rightVar - leftVar) < stepTol)
|
| 12 |
return 1;
|
| 13 |
else
|
| 14 |
return -1;
|
| 15 |
}
|
| 16 |
|
| 17 |
void GoldenSectionMinimizer::minimize(){
|
| 18 |
vector<double> tempX;
|
| 19 |
vector <double> currentX;
|
| 20 |
|
| 21 |
const double goldenRatio = 0.618034;
|
| 22 |
|
| 23 |
tempX = currentX = model->getX();
|
| 24 |
|
| 25 |
alpha = leftVar + (1 - goldenRatio) * (rightVar - leftVar);
|
| 26 |
beta = leftVar + goldenRatio * (rightVar - leftVar);
|
| 27 |
|
| 28 |
for (int i = 0; i < tempX.size(); i ++)
|
| 29 |
tempX[i] = currentX[i] + direction[i] * alpha;
|
| 30 |
|
| 31 |
fAlpha = model->calcF(tempX);
|
| 32 |
|
| 33 |
for (int i = 0; i < tempX.size(); i ++)
|
| 34 |
tempX[i] = currentX[i] + direction[i] * beta;
|
| 35 |
|
| 36 |
fBeta = model->calcF(tempX);
|
| 37 |
|
| 38 |
for(currentIter = 0; currentIter < maxIteration; currentIter++){
|
| 39 |
|
| 40 |
if (checkConvergence() > 0){
|
| 41 |
minStatus = MINSTATUS_CONVERGE;
|
| 42 |
return;
|
| 43 |
}
|
| 44 |
|
| 45 |
if (fAlpha > fBeta){
|
| 46 |
leftVar = alpha;
|
| 47 |
alpha = beta;
|
| 48 |
|
| 49 |
beta = leftVar + goldenRatio * (rightVar - leftVar);
|
| 50 |
|
| 51 |
for (int i = 0; i < tempX.size(); i ++)
|
| 52 |
tempX[i] = currentX[i] + direction[i] * beta;
|
| 53 |
fAlpha = fBeta;
|
| 54 |
fBeta = model->calcF(tempX);
|
| 55 |
|
| 56 |
prevMinVar = alpha;
|
| 57 |
fPrevMinVar = fAlpha;
|
| 58 |
minVar = beta;
|
| 59 |
fMinVar = fBeta;
|
| 60 |
}
|
| 61 |
else{
|
| 62 |
rightVar = beta;
|
| 63 |
beta = alpha;
|
| 64 |
|
| 65 |
alpha = leftVar + (1 - goldenRatio) * (rightVar - leftVar);
|
| 66 |
|
| 67 |
for (int i = 0; i < tempX.size(); i ++)
|
| 68 |
tempX[i] = currentX[i] + direction[i] * alpha;
|
| 69 |
|
| 70 |
fBeta = fAlpha;
|
| 71 |
fAlpha = model->calcF(tempX);
|
| 72 |
|
| 73 |
prevMinVar = beta;
|
| 74 |
fPrevMinVar = fBeta;
|
| 75 |
|
| 76 |
minVar = alpha;
|
| 77 |
fMinVar = fAlpha;
|
| 78 |
}
|
| 79 |
|
| 80 |
}
|
| 81 |
|
| 82 |
cerr << "GoldenSectionMinimizer Warning : can not reach tolerance" << endl;
|
| 83 |
minStatus = MINSTATUS_MAXITER;
|
| 84 |
|
| 85 |
}
|
| 86 |
|
| 87 |
/**
|
| 88 |
* Brent's method is a root-finding algorithm which combines root bracketing, interval bisection,
|
| 89 |
* and inverse quadratic interpolation.
|
| 90 |
*/
|
| 91 |
BrentMinimizer::BrentMinimizer(NLModel* nlp)
|
| 92 |
:Minimizer1D(nlp){
|
| 93 |
setName("Brent");
|
| 94 |
}
|
| 95 |
|
| 96 |
void BrentMinimizer::minimize(vector<double>& direction, double left, double right){
|
| 97 |
|
| 98 |
//brent algorithm ascending order
|
| 99 |
|
| 100 |
if (left > right)
|
| 101 |
setRange(right, left);
|
| 102 |
else
|
| 103 |
setRange(left, right);
|
| 104 |
|
| 105 |
setDirection(direction);
|
| 106 |
|
| 107 |
minimize();
|
| 108 |
}
|
| 109 |
void BrentMinimizer::minimize(){
|
| 110 |
|
| 111 |
double fu, fv, fw;
|
| 112 |
double p, q, r;
|
| 113 |
double u, v, w;
|
| 114 |
double d;
|
| 115 |
double e;
|
| 116 |
double etemp;
|
| 117 |
double stepTol2;
|
| 118 |
double fLeftVar, fRightVar;
|
| 119 |
const double goldenRatio = 0.3819660;
|
| 120 |
vector<double> tempX, currentX;
|
| 121 |
|
| 122 |
stepTol2 = 2 * stepTol;
|
| 123 |
|
| 124 |
e = 0;
|
| 125 |
d = 0;
|
| 126 |
|
| 127 |
currentX = model->getX();
|
| 128 |
tempX.resize(currentX.size());
|
| 129 |
|
| 130 |
|
| 131 |
|
| 132 |
|
| 133 |
for (int i = 0; i < tempX.size(); i ++)
|
| 134 |
tempX[i] = currentX[i] + direction[i] * leftVar;
|
| 135 |
|
| 136 |
fLeftVar = model->calcF(tempX);
|
| 137 |
|
| 138 |
for (int i = 0; i < tempX.size(); i ++)
|
| 139 |
tempX[i] = currentX[i] + direction[i] * rightVar;
|
| 140 |
|
| 141 |
fRightVar = model->calcF(tempX);
|
| 142 |
|
| 143 |
// find an interior point left < interior < right which satisfy f(left) > f(interior) and f(right) > f(interior)
|
| 144 |
|
| 145 |
bracket(minVar, fMinVar, leftVar, fLeftVar, rightVar, fRightVar);
|
| 146 |
|
| 147 |
if(fRightVar < fLeftVar) {
|
| 148 |
prevMinVar = rightVar;
|
| 149 |
fPrevMinVar = fRightVar;
|
| 150 |
v = leftVar;
|
| 151 |
fv = fLeftVar;
|
| 152 |
}
|
| 153 |
else {
|
| 154 |
prevMinVar = leftVar;
|
| 155 |
fPrevMinVar = fLeftVar;
|
| 156 |
v = rightVar;
|
| 157 |
fv = fRightVar;
|
| 158 |
}
|
| 159 |
|
| 160 |
minVar = rightVar+ goldenRatio * (rightVar - leftVar);
|
| 161 |
|
| 162 |
for (int i = 0; i < tempX.size(); i ++)
|
| 163 |
tempX[i] = currentX[i] + direction[i] * minVar;
|
| 164 |
|
| 165 |
fMinVar = model->calcF(tempX);
|
| 166 |
|
| 167 |
prevMinVar = v = minVar;
|
| 168 |
fPrevMinVar = fv = fMinVar;
|
| 169 |
midVar = (leftVar + rightVar) / 2;
|
| 170 |
|
| 171 |
for(currentIter = 0; currentIter < maxIteration; currentIter++){
|
| 172 |
|
| 173 |
//construct a trial parabolic fit
|
| 174 |
if (fabs(e) > stepTol){
|
| 175 |
|
| 176 |
r = (minVar - prevMinVar) * (fMinVar - fv);
|
| 177 |
q = (minVar - v) * (fMinVar - fPrevMinVar);
|
| 178 |
p = (minVar - v) *q -(minVar - prevMinVar)*r;
|
| 179 |
q = 2.0 *(q-r);
|
| 180 |
|
| 181 |
if (q > 0.0)
|
| 182 |
p = -p;
|
| 183 |
|
| 184 |
q = fabs(q);
|
| 185 |
|
| 186 |
etemp = e;
|
| 187 |
e = d;
|
| 188 |
|
| 189 |
if(fabs(p) >= fabs(0.5*q*etemp) || p <= q*(leftVar - minVar) || p >= q*(rightVar - minVar)){
|
| 190 |
//reject parabolic fit and use golden section step instead
|
| 191 |
e = minVar >= midVar ? leftVar - minVar : rightVar - minVar;
|
| 192 |
d = goldenRatio * e;
|
| 193 |
}
|
| 194 |
else{
|
| 195 |
|
| 196 |
//take the parabolic step
|
| 197 |
d = p/q;
|
| 198 |
u = minVar + d;
|
| 199 |
if ( u - leftVar < stepTol2 || rightVar - u < stepTol2)
|
| 200 |
d = midVar > minVar ? stepTol : - stepTol;
|
| 201 |
}
|
| 202 |
|
| 203 |
}
|
| 204 |
else{
|
| 205 |
e = minVar >= midVar ? leftVar -minVar : rightVar-minVar;
|
| 206 |
d = goldenRatio * e;
|
| 207 |
}
|
| 208 |
|
| 209 |
u = fabs(d) >= stepTol ? minVar + d : minVar + copysign(stepTol, d);
|
| 210 |
|
| 211 |
for (int i = 0; i < tempX.size(); i ++)
|
| 212 |
tempX[i] = currentX[i] + direction[i] * u;
|
| 213 |
|
| 214 |
fu = model->calcF(tempX);
|
| 215 |
|
| 216 |
if(fu <= fMinVar){
|
| 217 |
|
| 218 |
if(u >= minVar)
|
| 219 |
leftVar = minVar;
|
| 220 |
else
|
| 221 |
rightVar = minVar;
|
| 222 |
|
| 223 |
v = prevMinVar;
|
| 224 |
prevMinVar = minVar;
|
| 225 |
minVar = u;
|
| 226 |
|
| 227 |
fv = fPrevMinVar;
|
| 228 |
fPrevMinVar = fMinVar;
|
| 229 |
fMinVar = fu;
|
| 230 |
|
| 231 |
}
|
| 232 |
else{
|
| 233 |
if (u < minVar) leftVar = u;
|
| 234 |
else rightVar= u;
|
| 235 |
|
| 236 |
if(fu <= fPrevMinVar || prevMinVar == minVar) {
|
| 237 |
v = prevMinVar;
|
| 238 |
fv = fPrevMinVar;
|
| 239 |
prevMinVar = u;
|
| 240 |
fPrevMinVar = fu;
|
| 241 |
}
|
| 242 |
else if ( fu <= fv || v == minVar || v == prevMinVar ) {
|
| 243 |
v = u;
|
| 244 |
fv = fu;
|
| 245 |
}
|
| 246 |
}
|
| 247 |
|
| 248 |
midVar = (leftVar + rightVar) /2;
|
| 249 |
|
| 250 |
if (checkConvergence() > 0){
|
| 251 |
minStatus = MINSTATUS_CONVERGE;
|
| 252 |
return;
|
| 253 |
}
|
| 254 |
|
| 255 |
}
|
| 256 |
|
| 257 |
|
| 258 |
minStatus = MINSTATUS_MAXITER;
|
| 259 |
return;
|
| 260 |
}
|
| 261 |
|
| 262 |
int BrentMinimizer::checkConvergence(){
|
| 263 |
|
| 264 |
if (fabs(minVar - midVar) < stepTol)
|
| 265 |
return 1;
|
| 266 |
else
|
| 267 |
return -1;
|
| 268 |
}
|
| 269 |
|
| 270 |
/*******************************************************
|
| 271 |
* Bracketing a minimum of a real function Y=F(X) *
|
| 272 |
* using MNBRAK subroutine *
|
| 273 |
* ---------------------------------------------------- *
|
| 274 |
* REFERENCE: "Numerical recipes, The Art of Scientific *
|
| 275 |
* Computing by W.H. Press, B.P. Flannery, *
|
| 276 |
* S.A. Teukolsky and W.T. Vetterling, *
|
| 277 |
* Cambridge university Press, 1986". *
|
| 278 |
* ---------------------------------------------------- *
|
| 279 |
* We have different situation here, we want to limit the
|
| 280 |
********************************************************/
|
| 281 |
void BrentMinimizer::bracket(double& cx, double& fc, double& ax, double& fa, double& bx, double& fb){
|
| 282 |
vector<double> currentX;
|
| 283 |
vector<double> tempX;
|
| 284 |
double u, r, q;
|
| 285 |
double fu;
|
| 286 |
double ulim;
|
| 287 |
const double TINY = 1.0e-20;
|
| 288 |
const double GLIMIT = 100.0;
|
| 289 |
const double GoldenRatio = 0.618034;
|
| 290 |
const int MAXBRACKETITER = 100;
|
| 291 |
currentX = model->getX();
|
| 292 |
tempX.resize(currentX.size());
|
| 293 |
|
| 294 |
if (fb > fa){
|
| 295 |
swap(fa, fb);
|
| 296 |
swap(ax, bx);
|
| 297 |
}
|
| 298 |
|
| 299 |
cx = bx + GoldenRatio * (bx - ax);
|
| 300 |
|
| 301 |
fc = model->calcF(tempX);
|
| 302 |
|
| 303 |
for(int k = 0; k < MAXBRACKETITER && (fb < fc); k++){
|
| 304 |
|
| 305 |
r = (bx - ax) * (fb -fc);
|
| 306 |
q = (bx - cx) * (fb - fa);
|
| 307 |
u = bx -((bx - cx)*q - (bx-ax)*r)/(2.0 * copysign(max(fabs(q-r), TINY) ,q-r));
|
| 308 |
ulim = bx + GLIMIT *(cx - bx);
|
| 309 |
|
| 310 |
for (int i = 0; i < tempX.size(); i ++)
|
| 311 |
tempX[i] = currentX[i] + direction[i] * u;
|
| 312 |
|
| 313 |
if ((bx -u) * (u -cx) > 0){
|
| 314 |
fu = model->calcF(tempX);
|
| 315 |
|
| 316 |
if (fu < fc){
|
| 317 |
ax = bx;
|
| 318 |
bx = u;
|
| 319 |
fa = fb;
|
| 320 |
fb = fu;
|
| 321 |
}
|
| 322 |
else if (fu > fb){
|
| 323 |
cx = u;
|
| 324 |
fc = fu;
|
| 325 |
return;
|
| 326 |
}
|
| 327 |
}
|
| 328 |
else if ((cx - u)* (u - ulim) > 0.0){
|
| 329 |
|
| 330 |
fu = model->calcF(tempX);
|
| 331 |
|
| 332 |
if (fu < fc){
|
| 333 |
bx = cx;
|
| 334 |
cx = u;
|
| 335 |
u = cx + GoldenRatio * (cx - bx);
|
| 336 |
|
| 337 |
fb = fc;
|
| 338 |
fc = fu;
|
| 339 |
|
| 340 |
for (int i = 0; i < tempX.size(); i ++)
|
| 341 |
tempX[i] = currentX[i] + direction[i] * u;
|
| 342 |
|
| 343 |
fu = model->calcF(tempX);
|
| 344 |
}
|
| 345 |
}
|
| 346 |
else if ((u-ulim) * (ulim - cx) >= 0.0){
|
| 347 |
u = ulim;
|
| 348 |
|
| 349 |
fu = model->calcF(tempX);
|
| 350 |
|
| 351 |
}
|
| 352 |
else {
|
| 353 |
u = cx + GoldenRatio * (cx -bx);
|
| 354 |
|
| 355 |
fu = model->calcF(tempX);
|
| 356 |
}
|
| 357 |
|
| 358 |
ax = bx;
|
| 359 |
bx = cx;
|
| 360 |
cx = u;
|
| 361 |
|
| 362 |
fa = fb;
|
| 363 |
fb = fc;
|
| 364 |
fc = fu;
|
| 365 |
|
| 366 |
}
|
| 367 |
|
| 368 |
}
|
| 369 |
|