1 |
#include "Minimizer1D.hpp"
|
2 |
#include "math.h"
|
3 |
#include "Utility.hpp"
|
4 |
GoldenSectionMinimizer::GoldenSectionMinimizer(NLModel* nlp)
|
5 |
:Minimizer1D(nlp){
|
6 |
setName("GoldenSection");
|
7 |
}
|
8 |
|
9 |
int GoldenSectionMinimizer::checkConvergence(){
|
10 |
|
11 |
if ((rightVar - leftVar) < stepTol)
|
12 |
return 1;
|
13 |
else
|
14 |
return -1;
|
15 |
}
|
16 |
|
17 |
void GoldenSectionMinimizer::minimize(){
|
18 |
vector<double> tempX;
|
19 |
vector <double> currentX;
|
20 |
|
21 |
const double goldenRatio = 0.618034;
|
22 |
|
23 |
tempX = currentX = model->getX();
|
24 |
|
25 |
alpha = leftVar + (1 - goldenRatio) * (rightVar - leftVar);
|
26 |
beta = leftVar + goldenRatio * (rightVar - leftVar);
|
27 |
|
28 |
for (int i = 0; i < tempX.size(); i ++)
|
29 |
tempX[i] = currentX[i] + direction[i] * alpha;
|
30 |
|
31 |
fAlpha = model->calcF(tempX);
|
32 |
|
33 |
for (int i = 0; i < tempX.size(); i ++)
|
34 |
tempX[i] = currentX[i] + direction[i] * beta;
|
35 |
|
36 |
fBeta = model->calcF(tempX);
|
37 |
|
38 |
for(currentIter = 0; currentIter < maxIteration; currentIter++){
|
39 |
|
40 |
if (checkConvergence() > 0){
|
41 |
minStatus = MINSTATUS_CONVERGE;
|
42 |
return;
|
43 |
}
|
44 |
|
45 |
if (fAlpha > fBeta){
|
46 |
leftVar = alpha;
|
47 |
alpha = beta;
|
48 |
|
49 |
beta = leftVar + goldenRatio * (rightVar - leftVar);
|
50 |
|
51 |
for (int i = 0; i < tempX.size(); i ++)
|
52 |
tempX[i] = currentX[i] + direction[i] * beta;
|
53 |
fAlpha = fBeta;
|
54 |
fBeta = model->calcF(tempX);
|
55 |
|
56 |
prevMinVar = alpha;
|
57 |
fPrevMinVar = fAlpha;
|
58 |
minVar = beta;
|
59 |
fMinVar = fBeta;
|
60 |
}
|
61 |
else{
|
62 |
rightVar = beta;
|
63 |
beta = alpha;
|
64 |
|
65 |
alpha = leftVar + (1 - goldenRatio) * (rightVar - leftVar);
|
66 |
|
67 |
for (int i = 0; i < tempX.size(); i ++)
|
68 |
tempX[i] = currentX[i] + direction[i] * alpha;
|
69 |
|
70 |
fBeta = fAlpha;
|
71 |
fAlpha = model->calcF(tempX);
|
72 |
|
73 |
prevMinVar = beta;
|
74 |
fPrevMinVar = fBeta;
|
75 |
|
76 |
minVar = alpha;
|
77 |
fMinVar = fAlpha;
|
78 |
}
|
79 |
|
80 |
}
|
81 |
|
82 |
cerr << "GoldenSectionMinimizer Warning : can not reach tolerance" << endl;
|
83 |
minStatus = MINSTATUS_MAXITER;
|
84 |
|
85 |
}
|
86 |
|
87 |
/**
|
88 |
* Brent's method is a root-finding algorithm which combines root bracketing, interval bisection,
|
89 |
* and inverse quadratic interpolation.
|
90 |
*/
|
91 |
BrentMinimizer::BrentMinimizer(NLModel* nlp)
|
92 |
:Minimizer1D(nlp){
|
93 |
setName("Brent");
|
94 |
}
|
95 |
|
96 |
void BrentMinimizer::minimize(vector<double>& direction, double left, double right){
|
97 |
|
98 |
//brent algorithm ascending order
|
99 |
|
100 |
if (left > right)
|
101 |
setRange(right, left);
|
102 |
else
|
103 |
setRange(left, right);
|
104 |
|
105 |
setDirection(direction);
|
106 |
|
107 |
minimize();
|
108 |
}
|
109 |
void BrentMinimizer::minimize(){
|
110 |
|
111 |
double fu, fv, fw;
|
112 |
double p, q, r;
|
113 |
double u, v, w;
|
114 |
double d;
|
115 |
double e;
|
116 |
double etemp;
|
117 |
double stepTol2;
|
118 |
double fLeftVar, fRightVar;
|
119 |
const double goldenRatio = 0.3819660;
|
120 |
vector<double> tempX, currentX;
|
121 |
|
122 |
stepTol2 = 2 * stepTol;
|
123 |
|
124 |
e = 0;
|
125 |
d = 0;
|
126 |
|
127 |
currentX = model->getX();
|
128 |
tempX.resize(currentX.size());
|
129 |
|
130 |
|
131 |
|
132 |
|
133 |
for (int i = 0; i < tempX.size(); i ++)
|
134 |
tempX[i] = currentX[i] + direction[i] * leftVar;
|
135 |
|
136 |
fLeftVar = model->calcF(tempX);
|
137 |
|
138 |
for (int i = 0; i < tempX.size(); i ++)
|
139 |
tempX[i] = currentX[i] + direction[i] * rightVar;
|
140 |
|
141 |
fRightVar = model->calcF(tempX);
|
142 |
|
143 |
// find an interior point left < interior < right which satisfy f(left) > f(interior) and f(right) > f(interior)
|
144 |
|
145 |
bracket(minVar, fMinVar, leftVar, fLeftVar, rightVar, fRightVar);
|
146 |
|
147 |
if(fRightVar < fLeftVar) {
|
148 |
prevMinVar = rightVar;
|
149 |
fPrevMinVar = fRightVar;
|
150 |
v = leftVar;
|
151 |
fv = fLeftVar;
|
152 |
}
|
153 |
else {
|
154 |
prevMinVar = leftVar;
|
155 |
fPrevMinVar = fLeftVar;
|
156 |
v = rightVar;
|
157 |
fv = fRightVar;
|
158 |
}
|
159 |
|
160 |
minVar = rightVar+ goldenRatio * (rightVar - leftVar);
|
161 |
|
162 |
for (int i = 0; i < tempX.size(); i ++)
|
163 |
tempX[i] = currentX[i] + direction[i] * minVar;
|
164 |
|
165 |
fMinVar = model->calcF(tempX);
|
166 |
|
167 |
prevMinVar = v = minVar;
|
168 |
fPrevMinVar = fv = fMinVar;
|
169 |
midVar = (leftVar + rightVar) / 2;
|
170 |
|
171 |
for(currentIter = 0; currentIter < maxIteration; currentIter++){
|
172 |
|
173 |
//construct a trial parabolic fit
|
174 |
if (fabs(e) > stepTol){
|
175 |
|
176 |
r = (minVar - prevMinVar) * (fMinVar - fv);
|
177 |
q = (minVar - v) * (fMinVar - fPrevMinVar);
|
178 |
p = (minVar - v) *q -(minVar - prevMinVar)*r;
|
179 |
q = 2.0 *(q-r);
|
180 |
|
181 |
if (q > 0.0)
|
182 |
p = -p;
|
183 |
|
184 |
q = fabs(q);
|
185 |
|
186 |
etemp = e;
|
187 |
e = d;
|
188 |
|
189 |
if(fabs(p) >= fabs(0.5*q*etemp) || p <= q*(leftVar - minVar) || p >= q*(rightVar - minVar)){
|
190 |
//reject parabolic fit and use golden section step instead
|
191 |
e = minVar >= midVar ? leftVar - minVar : rightVar - minVar;
|
192 |
d = goldenRatio * e;
|
193 |
}
|
194 |
else{
|
195 |
|
196 |
//take the parabolic step
|
197 |
d = p/q;
|
198 |
u = minVar + d;
|
199 |
if ( u - leftVar < stepTol2 || rightVar - u < stepTol2)
|
200 |
d = midVar > minVar ? stepTol : - stepTol;
|
201 |
}
|
202 |
|
203 |
}
|
204 |
else{
|
205 |
e = minVar >= midVar ? leftVar -minVar : rightVar-minVar;
|
206 |
d = goldenRatio * e;
|
207 |
}
|
208 |
|
209 |
u = fabs(d) >= stepTol ? minVar + d : minVar + copysign(stepTol, d);
|
210 |
|
211 |
for (int i = 0; i < tempX.size(); i ++)
|
212 |
tempX[i] = currentX[i] + direction[i] * u;
|
213 |
|
214 |
fu = model->calcF(tempX);
|
215 |
|
216 |
if(fu <= fMinVar){
|
217 |
|
218 |
if(u >= minVar)
|
219 |
leftVar = minVar;
|
220 |
else
|
221 |
rightVar = minVar;
|
222 |
|
223 |
v = prevMinVar;
|
224 |
prevMinVar = minVar;
|
225 |
minVar = u;
|
226 |
|
227 |
fv = fPrevMinVar;
|
228 |
fPrevMinVar = fMinVar;
|
229 |
fMinVar = fu;
|
230 |
|
231 |
}
|
232 |
else{
|
233 |
if (u < minVar) leftVar = u;
|
234 |
else rightVar= u;
|
235 |
|
236 |
if(fu <= fPrevMinVar || prevMinVar == minVar) {
|
237 |
v = prevMinVar;
|
238 |
fv = fPrevMinVar;
|
239 |
prevMinVar = u;
|
240 |
fPrevMinVar = fu;
|
241 |
}
|
242 |
else if ( fu <= fv || v == minVar || v == prevMinVar ) {
|
243 |
v = u;
|
244 |
fv = fu;
|
245 |
}
|
246 |
}
|
247 |
|
248 |
midVar = (leftVar + rightVar) /2;
|
249 |
|
250 |
if (checkConvergence() > 0){
|
251 |
minStatus = MINSTATUS_CONVERGE;
|
252 |
return;
|
253 |
}
|
254 |
|
255 |
}
|
256 |
|
257 |
|
258 |
minStatus = MINSTATUS_MAXITER;
|
259 |
return;
|
260 |
}
|
261 |
|
262 |
int BrentMinimizer::checkConvergence(){
|
263 |
|
264 |
if (fabs(minVar - midVar) < stepTol)
|
265 |
return 1;
|
266 |
else
|
267 |
return -1;
|
268 |
}
|
269 |
|
270 |
/*******************************************************
|
271 |
* Bracketing a minimum of a real function Y=F(X) *
|
272 |
* using MNBRAK subroutine *
|
273 |
* ---------------------------------------------------- *
|
274 |
* REFERENCE: "Numerical recipes, The Art of Scientific *
|
275 |
* Computing by W.H. Press, B.P. Flannery, *
|
276 |
* S.A. Teukolsky and W.T. Vetterling, *
|
277 |
* Cambridge university Press, 1986". *
|
278 |
* ---------------------------------------------------- *
|
279 |
* We have different situation here, we want to limit the
|
280 |
********************************************************/
|
281 |
void BrentMinimizer::bracket(double& cx, double& fc, double& ax, double& fa, double& bx, double& fb){
|
282 |
vector<double> currentX;
|
283 |
vector<double> tempX;
|
284 |
double u, r, q;
|
285 |
double fu;
|
286 |
double ulim;
|
287 |
const double TINY = 1.0e-20;
|
288 |
const double GLIMIT = 100.0;
|
289 |
const double GoldenRatio = 0.618034;
|
290 |
const int MAXBRACKETITER = 100;
|
291 |
currentX = model->getX();
|
292 |
tempX.resize(currentX.size());
|
293 |
|
294 |
if (fb > fa){
|
295 |
swap(fa, fb);
|
296 |
swap(ax, bx);
|
297 |
}
|
298 |
|
299 |
cx = bx + GoldenRatio * (bx - ax);
|
300 |
|
301 |
fc = model->calcF(tempX);
|
302 |
|
303 |
for(int k = 0; k < MAXBRACKETITER && (fb < fc); k++){
|
304 |
|
305 |
r = (bx - ax) * (fb -fc);
|
306 |
q = (bx - cx) * (fb - fa);
|
307 |
u = bx -((bx - cx)*q - (bx-ax)*r)/(2.0 * copysign(max(fabs(q-r), TINY) ,q-r));
|
308 |
ulim = bx + GLIMIT *(cx - bx);
|
309 |
|
310 |
for (int i = 0; i < tempX.size(); i ++)
|
311 |
tempX[i] = currentX[i] + direction[i] * u;
|
312 |
|
313 |
if ((bx -u) * (u -cx) > 0){
|
314 |
fu = model->calcF(tempX);
|
315 |
|
316 |
if (fu < fc){
|
317 |
ax = bx;
|
318 |
bx = u;
|
319 |
fa = fb;
|
320 |
fb = fu;
|
321 |
}
|
322 |
else if (fu > fb){
|
323 |
cx = u;
|
324 |
fc = fu;
|
325 |
return;
|
326 |
}
|
327 |
}
|
328 |
else if ((cx - u)* (u - ulim) > 0.0){
|
329 |
|
330 |
fu = model->calcF(tempX);
|
331 |
|
332 |
if (fu < fc){
|
333 |
bx = cx;
|
334 |
cx = u;
|
335 |
u = cx + GoldenRatio * (cx - bx);
|
336 |
|
337 |
fb = fc;
|
338 |
fc = fu;
|
339 |
|
340 |
for (int i = 0; i < tempX.size(); i ++)
|
341 |
tempX[i] = currentX[i] + direction[i] * u;
|
342 |
|
343 |
fu = model->calcF(tempX);
|
344 |
}
|
345 |
}
|
346 |
else if ((u-ulim) * (ulim - cx) >= 0.0){
|
347 |
u = ulim;
|
348 |
|
349 |
fu = model->calcF(tempX);
|
350 |
|
351 |
}
|
352 |
else {
|
353 |
u = cx + GoldenRatio * (cx -bx);
|
354 |
|
355 |
fu = model->calcF(tempX);
|
356 |
}
|
357 |
|
358 |
ax = bx;
|
359 |
bx = cx;
|
360 |
cx = u;
|
361 |
|
362 |
fa = fb;
|
363 |
fb = fc;
|
364 |
fc = fu;
|
365 |
|
366 |
}
|
367 |
|
368 |
}
|
369 |
|