1 |
|
#include "Minimizer1D.hpp" |
2 |
|
#include "math.h" |
3 |
< |
|
4 |
< |
//----------------------------------------------------------------------------// |
5 |
< |
void Minimizer1D::Minimize(vector<double>& direction, double left, double right){ |
6 |
< |
setDirection(direction); |
7 |
< |
setRange(left,right); |
8 |
< |
minimize(); |
9 |
< |
} |
10 |
< |
|
11 |
< |
//----------------------------------------------------------------------------// |
3 |
> |
#include "Utility.hpp" |
4 |
|
GoldenSectionMinimizer::GoldenSectionMinimizer(NLModel* nlp) |
5 |
|
:Minimizer1D(nlp){ |
6 |
|
setName("GoldenSection"); |
13 |
|
else |
14 |
|
return -1; |
15 |
|
} |
16 |
+ |
|
17 |
|
void GoldenSectionMinimizer::minimize(){ |
18 |
|
vector<double> tempX; |
19 |
|
vector <double> currentX; |
20 |
|
|
21 |
|
const double goldenRatio = 0.618034; |
22 |
|
|
23 |
< |
currentX = model->getX(); |
23 |
> |
tempX = currentX = model->getX(); |
24 |
|
|
25 |
|
alpha = leftVar + (1 - goldenRatio) * (rightVar - leftVar); |
26 |
|
beta = leftVar + goldenRatio * (rightVar - leftVar); |
27 |
|
|
28 |
< |
tempX = currentX + direction * alpha; |
28 |
> |
for (int i = 0; i < tempX.size(); i ++) |
29 |
> |
tempX[i] = currentX[i] + direction[i] * alpha; |
30 |
> |
|
31 |
|
fAlpha = model->calcF(tempX); |
32 |
|
|
33 |
< |
tempX = currentX + direction * beta; |
33 |
> |
for (int i = 0; i < tempX.size(); i ++) |
34 |
> |
tempX[i] = currentX[i] + direction[i] * beta; |
35 |
> |
|
36 |
|
fBeta = model->calcF(tempX); |
37 |
|
|
38 |
|
for(currentIter = 0; currentIter < maxIteration; currentIter++){ |
45 |
|
if (fAlpha > fBeta){ |
46 |
|
leftVar = alpha; |
47 |
|
alpha = beta; |
48 |
+ |
|
49 |
|
beta = leftVar + goldenRatio * (rightVar - leftVar); |
50 |
|
|
51 |
< |
tempX = currentX + beta * direction; |
52 |
< |
|
53 |
< |
prevMinVar = minVar; |
54 |
< |
fPrevMinVar = fMinVar; |
51 |
> |
for (int i = 0; i < tempX.size(); i ++) |
52 |
> |
tempX[i] = currentX[i] + direction[i] * beta; |
53 |
> |
fAlpha = fBeta; |
54 |
> |
fBeta = model->calcF(tempX); |
55 |
|
|
56 |
+ |
prevMinVar = alpha; |
57 |
+ |
fPrevMinVar = fAlpha; |
58 |
|
minVar = beta; |
59 |
< |
fMinVar = model->calcF(tempX); |
60 |
< |
|
59 |
> |
fMinVar = fBeta; |
60 |
|
} |
61 |
|
else{ |
62 |
|
rightVar = beta; |
63 |
|
beta = alpha; |
64 |
+ |
|
65 |
|
alpha = leftVar + (1 - goldenRatio) * (rightVar - leftVar); |
66 |
|
|
67 |
< |
tempX = currentX + alpha * direction; |
67 |
> |
for (int i = 0; i < tempX.size(); i ++) |
68 |
> |
tempX[i] = currentX[i] + direction[i] * alpha; |
69 |
|
|
70 |
< |
prevMinVar = minVar; |
71 |
< |
fPrevMinVar = fMinVar; |
72 |
< |
|
70 |
> |
fBeta = fAlpha; |
71 |
> |
fAlpha = model->calcF(tempX); |
72 |
> |
|
73 |
> |
prevMinVar = beta; |
74 |
> |
fPrevMinVar = fBeta; |
75 |
> |
|
76 |
|
minVar = alpha; |
77 |
< |
fMinVar = model->calcF(tempX); |
77 |
> |
fMinVar = fAlpha; |
78 |
|
} |
79 |
|
|
80 |
|
} |
81 |
|
|
82 |
+ |
cerr << "GoldenSectionMinimizer Warning : can not reach tolerance" << endl; |
83 |
|
minStatus = MINSTATUS_MAXITER; |
84 |
|
|
85 |
|
} |
93 |
|
setName("Brent"); |
94 |
|
} |
95 |
|
|
96 |
+ |
void BrentMinimizer::minimize(vector<double>& direction, double left, double right){ |
97 |
+ |
|
98 |
+ |
//brent algorithm ascending order |
99 |
+ |
|
100 |
+ |
if (left > right) |
101 |
+ |
setRange(right, left); |
102 |
+ |
else |
103 |
+ |
setRange(left, right); |
104 |
+ |
|
105 |
+ |
setDirection(direction); |
106 |
+ |
|
107 |
+ |
minimize(); |
108 |
+ |
} |
109 |
|
void BrentMinimizer::minimize(){ |
110 |
|
|
111 |
|
double fu, fv, fw; |
120 |
|
vector<double> tempX, currentX; |
121 |
|
|
122 |
|
stepTol2 = 2 * stepTol; |
123 |
+ |
|
124 |
|
e = 0; |
125 |
|
d = 0; |
126 |
|
|
127 |
< |
currentX = tempX = model->getX(); |
127 |
> |
currentX = model->getX(); |
128 |
> |
tempX.resize(currentX.size()); |
129 |
|
|
130 |
< |
tempX = currentX + leftVar * direction; |
130 |
> |
|
131 |
> |
|
132 |
> |
|
133 |
> |
for (int i = 0; i < tempX.size(); i ++) |
134 |
> |
tempX[i] = currentX[i] + direction[i] * leftVar; |
135 |
> |
|
136 |
|
fLeftVar = model->calcF(tempX); |
137 |
+ |
|
138 |
+ |
for (int i = 0; i < tempX.size(); i ++) |
139 |
+ |
tempX[i] = currentX[i] + direction[i] * rightVar; |
140 |
|
|
113 |
– |
tempX = currentX + rightVar * direction; |
141 |
|
fRightVar = model->calcF(tempX); |
142 |
|
|
143 |
+ |
// find an interior point left < interior < right which satisfy f(left) > f(interior) and f(right) > f(interior) |
144 |
+ |
|
145 |
+ |
bracket(minVar, fMinVar, leftVar, fLeftVar, rightVar, fRightVar); |
146 |
+ |
|
147 |
|
if(fRightVar < fLeftVar) { |
148 |
|
prevMinVar = rightVar; |
149 |
|
fPrevMinVar = fRightVar; |
156 |
|
v = rightVar; |
157 |
|
fv = fRightVar; |
158 |
|
} |
159 |
+ |
|
160 |
+ |
minVar = rightVar+ goldenRatio * (rightVar - leftVar); |
161 |
|
|
162 |
< |
midVar = leftVar + rightVar; |
162 |
> |
for (int i = 0; i < tempX.size(); i ++) |
163 |
> |
tempX[i] = currentX[i] + direction[i] * minVar; |
164 |
> |
|
165 |
> |
fMinVar = model->calcF(tempX); |
166 |
|
|
167 |
< |
for(currentIter = 0; currentIter < maxIteration; currentIter){ |
167 |
> |
prevMinVar = v = minVar; |
168 |
> |
fPrevMinVar = fv = fMinVar; |
169 |
> |
midVar = (leftVar + rightVar) / 2; |
170 |
> |
|
171 |
> |
for(currentIter = 0; currentIter < maxIteration; currentIter++){ |
172 |
|
|
173 |
< |
// a trial parabolic fit |
173 |
> |
//construct a trial parabolic fit |
174 |
|
if (fabs(e) > stepTol){ |
175 |
|
|
176 |
|
r = (minVar - prevMinVar) * (fMinVar - fv); |
187 |
|
e = d; |
188 |
|
|
189 |
|
if(fabs(p) >= fabs(0.5*q*etemp) || p <= q*(leftVar - minVar) || p >= q*(rightVar - minVar)){ |
190 |
+ |
//reject parabolic fit and use golden section step instead |
191 |
|
e = minVar >= midVar ? leftVar - minVar : rightVar - minVar; |
192 |
|
d = goldenRatio * e; |
193 |
|
} |
194 |
|
else{ |
195 |
+ |
|
196 |
+ |
//take the parabolic step |
197 |
|
d = p/q; |
198 |
|
u = minVar + d; |
199 |
|
if ( u - leftVar < stepTol2 || rightVar - u < stepTol2) |
200 |
|
d = midVar > minVar ? stepTol : - stepTol; |
201 |
|
} |
202 |
+ |
|
203 |
|
} |
160 |
– |
//golden section |
204 |
|
else{ |
205 |
< |
e = minVar >=midVar? leftVar - minVar : rightVar - minVar; |
206 |
< |
d =goldenRatio * e; |
205 |
> |
e = minVar >= midVar ? leftVar -minVar : rightVar-minVar; |
206 |
> |
d = goldenRatio * e; |
207 |
|
} |
208 |
|
|
209 |
< |
u = fabs(d) >= stepTol ? minVar + d : minVar + copysign(d, stepTol); |
209 |
> |
u = fabs(d) >= stepTol ? minVar + d : minVar + copysign(stepTol, d); |
210 |
|
|
211 |
< |
tempX = currentX + u * direction; |
212 |
< |
fu = model->calcF(); |
211 |
> |
for (int i = 0; i < tempX.size(); i ++) |
212 |
> |
tempX[i] = currentX[i] + direction[i] * u; |
213 |
> |
|
214 |
> |
fu = model->calcF(tempX); |
215 |
|
|
216 |
|
if(fu <= fMinVar){ |
217 |
|
|
221 |
|
rightVar = minVar; |
222 |
|
|
223 |
|
v = prevMinVar; |
179 |
– |
fv = fPrevMinVar; |
224 |
|
prevMinVar = minVar; |
181 |
– |
fPrevMinVar = fMinVar; |
225 |
|
minVar = u; |
226 |
+ |
|
227 |
+ |
fv = fPrevMinVar; |
228 |
+ |
fPrevMinVar = fMinVar; |
229 |
|
fMinVar = fu; |
230 |
|
|
231 |
|
} |
232 |
|
else{ |
233 |
|
if (u < minVar) leftVar = u; |
234 |
< |
else rightVar= u; |
234 |
> |
else rightVar= u; |
235 |
> |
|
236 |
|
if(fu <= fPrevMinVar || prevMinVar == minVar) { |
237 |
|
v = prevMinVar; |
238 |
|
fv = fPrevMinVar; |
245 |
|
} |
246 |
|
} |
247 |
|
|
248 |
< |
midVar = leftVar + rightVar; |
248 |
> |
midVar = (leftVar + rightVar) /2; |
249 |
|
|
250 |
|
if (checkConvergence() > 0){ |
251 |
|
minStatus = MINSTATUS_CONVERGE; |
266 |
|
else |
267 |
|
return -1; |
268 |
|
} |
269 |
+ |
|
270 |
+ |
/******************************************************* |
271 |
+ |
* Bracketing a minimum of a real function Y=F(X) * |
272 |
+ |
* using MNBRAK subroutine * |
273 |
+ |
* ---------------------------------------------------- * |
274 |
+ |
* REFERENCE: "Numerical recipes, The Art of Scientific * |
275 |
+ |
* Computing by W.H. Press, B.P. Flannery, * |
276 |
+ |
* S.A. Teukolsky and W.T. Vetterling, * |
277 |
+ |
* Cambridge university Press, 1986". * |
278 |
+ |
* ---------------------------------------------------- * |
279 |
+ |
* We have different situation here, we want to limit the |
280 |
+ |
********************************************************/ |
281 |
+ |
void BrentMinimizer::bracket(double& cx, double& fc, double& ax, double& fa, double& bx, double& fb){ |
282 |
+ |
vector<double> currentX; |
283 |
+ |
vector<double> tempX; |
284 |
+ |
double u, r, q; |
285 |
+ |
double fu; |
286 |
+ |
double ulim; |
287 |
+ |
const double TINY = 1.0e-20; |
288 |
+ |
const double GLIMIT = 100.0; |
289 |
+ |
const double GoldenRatio = 0.618034; |
290 |
+ |
const int MAXBRACKETITER = 100; |
291 |
+ |
currentX = model->getX(); |
292 |
+ |
tempX.resize(currentX.size()); |
293 |
+ |
|
294 |
+ |
if (fb > fa){ |
295 |
+ |
swap(fa, fb); |
296 |
+ |
swap(ax, bx); |
297 |
+ |
} |
298 |
+ |
|
299 |
+ |
cx = bx + GoldenRatio * (bx - ax); |
300 |
+ |
|
301 |
+ |
fc = model->calcF(tempX); |
302 |
+ |
|
303 |
+ |
for(int k = 0; k < MAXBRACKETITER && (fb < fc); k++){ |
304 |
+ |
|
305 |
+ |
r = (bx - ax) * (fb -fc); |
306 |
+ |
q = (bx - cx) * (fb - fa); |
307 |
+ |
u = bx -((bx - cx)*q - (bx-ax)*r)/(2.0 * copysign(max(fabs(q-r), TINY) ,q-r)); |
308 |
+ |
ulim = bx + GLIMIT *(cx - bx); |
309 |
+ |
|
310 |
+ |
for (int i = 0; i < tempX.size(); i ++) |
311 |
+ |
tempX[i] = currentX[i] + direction[i] * u; |
312 |
+ |
|
313 |
+ |
if ((bx -u) * (u -cx) > 0){ |
314 |
+ |
fu = model->calcF(tempX); |
315 |
+ |
|
316 |
+ |
if (fu < fc){ |
317 |
+ |
ax = bx; |
318 |
+ |
bx = u; |
319 |
+ |
fa = fb; |
320 |
+ |
fb = fu; |
321 |
+ |
} |
322 |
+ |
else if (fu > fb){ |
323 |
+ |
cx = u; |
324 |
+ |
fc = fu; |
325 |
+ |
return; |
326 |
+ |
} |
327 |
+ |
} |
328 |
+ |
else if ((cx - u)* (u - ulim) > 0.0){ |
329 |
+ |
|
330 |
+ |
fu = model->calcF(tempX); |
331 |
+ |
|
332 |
+ |
if (fu < fc){ |
333 |
+ |
bx = cx; |
334 |
+ |
cx = u; |
335 |
+ |
u = cx + GoldenRatio * (cx - bx); |
336 |
+ |
|
337 |
+ |
fb = fc; |
338 |
+ |
fc = fu; |
339 |
+ |
|
340 |
+ |
for (int i = 0; i < tempX.size(); i ++) |
341 |
+ |
tempX[i] = currentX[i] + direction[i] * u; |
342 |
+ |
|
343 |
+ |
fu = model->calcF(tempX); |
344 |
+ |
} |
345 |
+ |
} |
346 |
+ |
else if ((u-ulim) * (ulim - cx) >= 0.0){ |
347 |
+ |
u = ulim; |
348 |
+ |
|
349 |
+ |
fu = model->calcF(tempX); |
350 |
+ |
|
351 |
+ |
} |
352 |
+ |
else { |
353 |
+ |
u = cx + GoldenRatio * (cx -bx); |
354 |
+ |
|
355 |
+ |
fu = model->calcF(tempX); |
356 |
+ |
} |
357 |
+ |
|
358 |
+ |
ax = bx; |
359 |
+ |
bx = cx; |
360 |
+ |
cx = u; |
361 |
+ |
|
362 |
+ |
fa = fb; |
363 |
+ |
fb = fc; |
364 |
+ |
fc = fu; |
365 |
+ |
|
366 |
+ |
} |
367 |
+ |
|
368 |
+ |
} |
369 |
+ |
|