| 1 |
|
#include "Minimizer1D.hpp" |
| 2 |
|
#include "math.h" |
| 3 |
|
|
| 4 |
– |
//----------------------------------------------------------------------------// |
| 5 |
– |
void Minimizer1D::Minimize(vector<double>& direction, double left, double right){ |
| 6 |
– |
setDirection(direction); |
| 7 |
– |
setRange(left,right); |
| 8 |
– |
minimize(); |
| 9 |
– |
} |
| 10 |
– |
|
| 11 |
– |
//----------------------------------------------------------------------------// |
| 4 |
|
GoldenSectionMinimizer::GoldenSectionMinimizer(NLModel* nlp) |
| 5 |
|
:Minimizer1D(nlp){ |
| 6 |
|
setName("GoldenSection"); |
| 19 |
|
|
| 20 |
|
const double goldenRatio = 0.618034; |
| 21 |
|
|
| 22 |
< |
currentX = model->getX(); |
| 22 |
> |
tempX = currentX = model->getX(); |
| 23 |
|
|
| 24 |
|
alpha = leftVar + (1 - goldenRatio) * (rightVar - leftVar); |
| 25 |
|
beta = leftVar + goldenRatio * (rightVar - leftVar); |
| 26 |
|
|
| 27 |
< |
tempX = currentX + direction * alpha; |
| 27 |
> |
for (int i = 0; i < tempX.size(); i ++) |
| 28 |
> |
tempX[i] = currentX[i] + direction[i] * alpha; |
| 29 |
> |
|
| 30 |
|
fAlpha = model->calcF(tempX); |
| 31 |
|
|
| 32 |
< |
tempX = currentX + direction * beta; |
| 32 |
> |
for (int i = 0; i < tempX.size(); i ++) |
| 33 |
> |
tempX[i] = currentX[i] + direction[i] * beta; |
| 34 |
> |
|
| 35 |
|
fBeta = model->calcF(tempX); |
| 36 |
|
|
| 37 |
|
for(currentIter = 0; currentIter < maxIteration; currentIter++){ |
| 46 |
|
alpha = beta; |
| 47 |
|
beta = leftVar + goldenRatio * (rightVar - leftVar); |
| 48 |
|
|
| 49 |
< |
tempX = currentX + beta * direction; |
| 49 |
> |
for (int i = 0; i < tempX.size(); i ++) |
| 50 |
> |
tempX[i] = currentX[i] + direction[i] * beta; |
| 51 |
|
|
| 52 |
|
prevMinVar = minVar; |
| 53 |
|
fPrevMinVar = fMinVar; |
| 61 |
|
beta = alpha; |
| 62 |
|
alpha = leftVar + (1 - goldenRatio) * (rightVar - leftVar); |
| 63 |
|
|
| 64 |
< |
tempX = currentX + alpha * direction; |
| 64 |
> |
for (int i = 0; i < tempX.size(); i ++) |
| 65 |
> |
tempX[i] = currentX[i] + direction[i] * alpha; |
| 66 |
|
|
| 67 |
|
prevMinVar = minVar; |
| 68 |
|
fPrevMinVar = fMinVar; |
| 105 |
|
|
| 106 |
|
currentX = tempX = model->getX(); |
| 107 |
|
|
| 108 |
< |
tempX = currentX + leftVar * direction; |
| 108 |
> |
for (int i = 0; i < tempX.size(); i ++) |
| 109 |
> |
tempX[i] = currentX[i] + direction[i] * leftVar; |
| 110 |
> |
|
| 111 |
|
fLeftVar = model->calcF(tempX); |
| 112 |
+ |
|
| 113 |
+ |
for (int i = 0; i < tempX.size(); i ++) |
| 114 |
+ |
tempX[i] = currentX[i] + direction[i] * rightVar; |
| 115 |
|
|
| 113 |
– |
tempX = currentX + rightVar * direction; |
| 116 |
|
fRightVar = model->calcF(tempX); |
| 117 |
|
|
| 118 |
|
if(fRightVar < fLeftVar) { |
| 167 |
|
|
| 168 |
|
u = fabs(d) >= stepTol ? minVar + d : minVar + copysign(d, stepTol); |
| 169 |
|
|
| 170 |
< |
tempX = currentX + u * direction; |
| 170 |
> |
for (int i = 0; i < tempX.size(); i ++) |
| 171 |
> |
tempX[i] = currentX[i] + direction[i] * u; |
| 172 |
> |
|
| 173 |
|
fu = model->calcF(); |
| 174 |
|
|
| 175 |
|
if(fu <= fMinVar){ |