| 1 |
|
#include "Minimizer1D.hpp" |
| 2 |
< |
void Minimizer1D::Minimize(vector<double>& direction), double left, double right); { |
| 3 |
< |
setDirection(direction); |
| 4 |
< |
setRange(left,right); |
| 5 |
< |
minimize(); |
| 2 |
> |
#include "math.h" |
| 3 |
> |
#include "Utility.hpp" |
| 4 |
> |
GoldenSectionMinimizer::GoldenSectionMinimizer(NLModel* nlp) |
| 5 |
> |
:Minimizer1D(nlp){ |
| 6 |
> |
setName("GoldenSection"); |
| 7 |
|
} |
| 8 |
|
|
| 9 |
< |
int Minimizer1D::checkConvergence(){ |
| 9 |
> |
int GoldenSectionMinimizer::checkConvergence(){ |
| 10 |
|
|
| 11 |
|
if ((rightVar - leftVar) < stepTol) |
| 12 |
< |
return |
| 12 |
> |
return 1; |
| 13 |
|
else |
| 14 |
|
return -1; |
| 15 |
|
} |
| 15 |
– |
|
| 16 |
|
void GoldenSectionMinimizer::minimize(){ |
| 17 |
|
vector<double> tempX; |
| 18 |
|
vector <double> currentX; |
| 19 |
|
|
| 20 |
|
const double goldenRatio = 0.618034; |
| 21 |
|
|
| 22 |
< |
currentX = model->getX(); |
| 22 |
> |
tempX = currentX = model->getX(); |
| 23 |
|
|
| 24 |
|
alpha = leftVar + (1 - goldenRatio) * (rightVar - leftVar); |
| 25 |
|
beta = leftVar + goldenRatio * (rightVar - leftVar); |
| 26 |
|
|
| 27 |
< |
tempX = currentX + direction * alpha; |
| 27 |
> |
for (int i = 0; i < tempX.size(); i ++) |
| 28 |
> |
tempX[i] = currentX[i] + direction[i] * alpha; |
| 29 |
> |
|
| 30 |
|
fAlpha = model->calcF(tempX); |
| 31 |
|
|
| 32 |
< |
tempX = currentX + direction * beta; |
| 32 |
> |
for (int i = 0; i < tempX.size(); i ++) |
| 33 |
> |
tempX[i] = currentX[i] + direction[i] * beta; |
| 34 |
> |
|
| 35 |
|
fBeta = model->calcF(tempX); |
| 36 |
|
|
| 37 |
|
for(currentIter = 0; currentIter < maxIteration; currentIter++){ |
| 44 |
|
if (fAlpha > fBeta){ |
| 45 |
|
leftVar = alpha; |
| 46 |
|
alpha = beta; |
| 47 |
+ |
|
| 48 |
|
beta = leftVar + goldenRatio * (rightVar - leftVar); |
| 49 |
|
|
| 50 |
< |
tempX = currentX + beta * direction; |
| 51 |
< |
|
| 52 |
< |
prevMinVar = minVar; |
| 53 |
< |
fPrevMinVar = fMinVar; |
| 50 |
> |
for (int i = 0; i < tempX.size(); i ++) |
| 51 |
> |
tempX[i] = currentX[i] + direction[i] * beta; |
| 52 |
> |
fAlpha = fBeta; |
| 53 |
> |
fBeta = model->calcF(tempX); |
| 54 |
|
|
| 55 |
+ |
prevMinVar = alpha; |
| 56 |
+ |
fPrevMinVar = fAlpha; |
| 57 |
|
minVar = beta; |
| 58 |
< |
fMinVar = model->calcF(tempX); |
| 52 |
< |
|
| 58 |
> |
fMinVar = fBeta; |
| 59 |
|
} |
| 60 |
|
else{ |
| 61 |
|
rightVar = beta; |
| 62 |
|
beta = alpha; |
| 63 |
+ |
|
| 64 |
|
alpha = leftVar + (1 - goldenRatio) * (rightVar - leftVar); |
| 65 |
|
|
| 66 |
< |
tempX = currentX + alpha * direction; |
| 66 |
> |
for (int i = 0; i < tempX.size(); i ++) |
| 67 |
> |
tempX[i] = currentX[i] + direction[i] * alpha; |
| 68 |
|
|
| 69 |
< |
prevMinVar = minVar; |
| 70 |
< |
fPrevMinVar = fMinVar; |
| 71 |
< |
|
| 69 |
> |
fBeta = fAlpha; |
| 70 |
> |
fAlpha = model->calcF(tempX); |
| 71 |
> |
|
| 72 |
> |
prevMinVar = beta; |
| 73 |
> |
fPrevMinVar = fBeta; |
| 74 |
> |
|
| 75 |
|
minVar = alpha; |
| 76 |
< |
fMinVar = model->calcF(tempX); |
| 76 |
> |
fMinVar = fAlpha; |
| 77 |
|
} |
| 78 |
|
|
| 79 |
|
} |
| 82 |
|
|
| 83 |
|
} |
| 84 |
|
|
| 85 |
< |
/* |
| 86 |
< |
* |
| 85 |
> |
/** |
| 86 |
> |
* Brent's method is a root-finding algorithm which combines root bracketing, interval bisection, |
| 87 |
> |
* and inverse quadratic interpolation. |
| 88 |
|
*/ |
| 89 |
+ |
BrentMinimizer::BrentMinimizer(NLModel* nlp) |
| 90 |
+ |
:Minimizer1D(nlp){ |
| 91 |
+ |
setName("Brent"); |
| 92 |
+ |
} |
| 93 |
|
|
| 94 |
|
void BrentMinimizer::minimize(){ |
| 95 |
|
|
| 96 |
< |
for(currentIter = 0; currentIter < maxIteration; currentIter){ |
| 96 |
> |
double fu, fv, fw; |
| 97 |
> |
double p, q, r; |
| 98 |
> |
double u, v, w; |
| 99 |
> |
double d; |
| 100 |
> |
double e; |
| 101 |
> |
double etemp; |
| 102 |
> |
double stepTol2; |
| 103 |
> |
double fLeftVar, fRightVar; |
| 104 |
> |
const double goldenRatio = 0.3819660; |
| 105 |
> |
vector<double> tempX, currentX; |
| 106 |
> |
|
| 107 |
> |
stepTol2 = 2 * stepTol; |
| 108 |
> |
e = 0; |
| 109 |
> |
d = 0; |
| 110 |
|
|
| 111 |
+ |
currentX = tempX = model->getX(); |
| 112 |
|
|
| 113 |
+ |
for (int i = 0; i < tempX.size(); i ++) |
| 114 |
+ |
tempX[i] = currentX[i] + direction[i] * leftVar; |
| 115 |
+ |
|
| 116 |
+ |
fLeftVar = model->calcF(tempX); |
| 117 |
|
|
| 118 |
+ |
for (int i = 0; i < tempX.size(); i ++) |
| 119 |
+ |
tempX[i] = currentX[i] + direction[i] * rightVar; |
| 120 |
+ |
|
| 121 |
+ |
fRightVar = model->calcF(tempX); |
| 122 |
|
|
| 123 |
+ |
if(fRightVar < fLeftVar) { |
| 124 |
+ |
prevMinVar = rightVar; |
| 125 |
+ |
fPrevMinVar = fRightVar; |
| 126 |
+ |
v = leftVar; |
| 127 |
+ |
fv = fLeftVar; |
| 128 |
|
} |
| 129 |
+ |
else { |
| 130 |
+ |
prevMinVar = leftVar; |
| 131 |
+ |
fPrevMinVar = fLeftVar; |
| 132 |
+ |
v = rightVar; |
| 133 |
+ |
fv = fRightVar; |
| 134 |
+ |
} |
| 135 |
|
|
| 136 |
+ |
midVar = (leftVar + rightVar) / 2; |
| 137 |
+ |
|
| 138 |
+ |
for(currentIter = 0; currentIter < maxIteration; currentIter++){ |
| 139 |
|
|
| 140 |
+ |
// a trial parabolic fit |
| 141 |
+ |
if (fabs(e) > stepTol){ |
| 142 |
+ |
|
| 143 |
+ |
r = (minVar - prevMinVar) * (fMinVar - fv); |
| 144 |
+ |
q = (minVar - v) * (fMinVar - fPrevMinVar); |
| 145 |
+ |
p = (minVar - v) *q -(minVar - prevMinVar)*r; |
| 146 |
+ |
q = 2.0 *(q-r); |
| 147 |
+ |
|
| 148 |
+ |
if (q > 0.0) |
| 149 |
+ |
p = -p; |
| 150 |
+ |
|
| 151 |
+ |
q = fabs(q); |
| 152 |
+ |
|
| 153 |
+ |
etemp = e; |
| 154 |
+ |
e = d; |
| 155 |
+ |
|
| 156 |
+ |
if(fabs(p) >= fabs(0.5*q*etemp) || p <= q*(leftVar - minVar) || p >= q*(rightVar - minVar)){ |
| 157 |
+ |
e = minVar >= midVar ? leftVar - minVar : rightVar - minVar; |
| 158 |
+ |
d = goldenRatio * e; |
| 159 |
+ |
} |
| 160 |
+ |
else{ |
| 161 |
+ |
d = p/q; |
| 162 |
+ |
u = minVar + d; |
| 163 |
+ |
if ( u - leftVar < stepTol2 || rightVar - u < stepTol2) |
| 164 |
+ |
d = midVar > minVar ? stepTol : - stepTol; |
| 165 |
+ |
} |
| 166 |
+ |
} |
| 167 |
+ |
//golden section |
| 168 |
+ |
else{ |
| 169 |
+ |
e = minVar >=midVar? leftVar - minVar : rightVar - minVar; |
| 170 |
+ |
d =goldenRatio * e; |
| 171 |
+ |
} |
| 172 |
+ |
|
| 173 |
+ |
u = fabs(d) >= stepTol ? minVar + d : minVar + copysign(d, stepTol); |
| 174 |
+ |
|
| 175 |
+ |
for (int i = 0; i < tempX.size(); i ++) |
| 176 |
+ |
tempX[i] = currentX[i] + direction[i] * u; |
| 177 |
+ |
|
| 178 |
+ |
fu = model->calcF(tempX); |
| 179 |
+ |
|
| 180 |
+ |
if(fu <= fMinVar){ |
| 181 |
+ |
|
| 182 |
+ |
if(u >= minVar) |
| 183 |
+ |
leftVar = minVar; |
| 184 |
+ |
else |
| 185 |
+ |
rightVar = minVar; |
| 186 |
+ |
|
| 187 |
+ |
v = prevMinVar; |
| 188 |
+ |
fv = fPrevMinVar; |
| 189 |
+ |
prevMinVar = minVar; |
| 190 |
+ |
fPrevMinVar = fMinVar; |
| 191 |
+ |
minVar = u; |
| 192 |
+ |
fMinVar = fu; |
| 193 |
+ |
|
| 194 |
+ |
} |
| 195 |
+ |
else{ |
| 196 |
+ |
if (u < minVar) leftVar = u; |
| 197 |
+ |
else rightVar= u; |
| 198 |
+ |
if(fu <= fPrevMinVar || prevMinVar == minVar) { |
| 199 |
+ |
v = prevMinVar; |
| 200 |
+ |
fv = fPrevMinVar; |
| 201 |
+ |
prevMinVar = u; |
| 202 |
+ |
fPrevMinVar = fu; |
| 203 |
+ |
} |
| 204 |
+ |
else if ( fu <= fv || v == minVar || v == prevMinVar ) { |
| 205 |
+ |
v = u; |
| 206 |
+ |
fv = fu; |
| 207 |
+ |
} |
| 208 |
+ |
} |
| 209 |
+ |
|
| 210 |
+ |
midVar = (leftVar + rightVar) /2; |
| 211 |
+ |
|
| 212 |
+ |
if (checkConvergence() > 0){ |
| 213 |
+ |
minStatus = MINSTATUS_CONVERGE; |
| 214 |
+ |
return; |
| 215 |
+ |
} |
| 216 |
+ |
|
| 217 |
+ |
} |
| 218 |
+ |
|
| 219 |
+ |
|
| 220 |
|
minStatus = MINSTATUS_MAXITER; |
| 221 |
< |
return; |
| 221 |
> |
return; |
| 222 |
|
} |
| 223 |
+ |
|
| 224 |
+ |
int BrentMinimizer::checkConvergence(){ |
| 225 |
+ |
|
| 226 |
+ |
if (fabs(minVar - midVar) < stepTol) |
| 227 |
+ |
return 1; |
| 228 |
+ |
else |
| 229 |
+ |
return -1; |
| 230 |
+ |
} |