| 1 |
|
#include "Minimizer1D.hpp" |
| 2 |
|
#include "math.h" |
| 3 |
< |
|
| 4 |
< |
//----------------------------------------------------------------------------// |
| 5 |
< |
void Minimizer1D::Minimize(vector<double>& direction), double left, double right); { |
| 6 |
< |
setDirection(direction); |
| 7 |
< |
setRange(left,right); |
| 8 |
< |
minimize(); |
| 9 |
< |
} |
| 10 |
< |
|
| 11 |
< |
//----------------------------------------------------------------------------// |
| 3 |
> |
#include "Utility.hpp" |
| 4 |
|
GoldenSectionMinimizer::GoldenSectionMinimizer(NLModel* nlp) |
| 5 |
|
:Minimizer1D(nlp){ |
| 6 |
|
setName("GoldenSection"); |
| 9 |
|
int GoldenSectionMinimizer::checkConvergence(){ |
| 10 |
|
|
| 11 |
|
if ((rightVar - leftVar) < stepTol) |
| 12 |
< |
return 1 |
| 12 |
> |
return 1; |
| 13 |
|
else |
| 14 |
|
return -1; |
| 15 |
|
} |
| 19 |
|
|
| 20 |
|
const double goldenRatio = 0.618034; |
| 21 |
|
|
| 22 |
< |
currentX = model->getX(); |
| 22 |
> |
tempX = currentX = model->getX(); |
| 23 |
|
|
| 24 |
|
alpha = leftVar + (1 - goldenRatio) * (rightVar - leftVar); |
| 25 |
|
beta = leftVar + goldenRatio * (rightVar - leftVar); |
| 26 |
|
|
| 27 |
< |
tempX = currentX + direction * alpha; |
| 27 |
> |
for (int i = 0; i < tempX.size(); i ++) |
| 28 |
> |
tempX[i] = currentX[i] + direction[i] * alpha; |
| 29 |
> |
|
| 30 |
|
fAlpha = model->calcF(tempX); |
| 31 |
|
|
| 32 |
< |
tempX = currentX + direction * beta; |
| 32 |
> |
for (int i = 0; i < tempX.size(); i ++) |
| 33 |
> |
tempX[i] = currentX[i] + direction[i] * beta; |
| 34 |
> |
|
| 35 |
|
fBeta = model->calcF(tempX); |
| 36 |
|
|
| 37 |
|
for(currentIter = 0; currentIter < maxIteration; currentIter++){ |
| 44 |
|
if (fAlpha > fBeta){ |
| 45 |
|
leftVar = alpha; |
| 46 |
|
alpha = beta; |
| 47 |
+ |
|
| 48 |
|
beta = leftVar + goldenRatio * (rightVar - leftVar); |
| 49 |
|
|
| 50 |
< |
tempX = currentX + beta * direction; |
| 51 |
< |
|
| 52 |
< |
prevMinVar = minVar; |
| 53 |
< |
fPrevMinVar = fMinVar; |
| 50 |
> |
for (int i = 0; i < tempX.size(); i ++) |
| 51 |
> |
tempX[i] = currentX[i] + direction[i] * beta; |
| 52 |
> |
fAlpha = fBeta; |
| 53 |
> |
fBeta = model->calcF(tempX); |
| 54 |
|
|
| 55 |
+ |
prevMinVar = alpha; |
| 56 |
+ |
fPrevMinVar = fAlpha; |
| 57 |
|
minVar = beta; |
| 58 |
< |
fMinVar = model->calcF(tempX); |
| 60 |
< |
|
| 58 |
> |
fMinVar = fBeta; |
| 59 |
|
} |
| 60 |
|
else{ |
| 61 |
|
rightVar = beta; |
| 62 |
|
beta = alpha; |
| 63 |
+ |
|
| 64 |
|
alpha = leftVar + (1 - goldenRatio) * (rightVar - leftVar); |
| 65 |
|
|
| 66 |
< |
tempX = currentX + alpha * direction; |
| 66 |
> |
for (int i = 0; i < tempX.size(); i ++) |
| 67 |
> |
tempX[i] = currentX[i] + direction[i] * alpha; |
| 68 |
|
|
| 69 |
< |
prevMinVar = minVar; |
| 70 |
< |
fPrevMinVar = fMinVar; |
| 71 |
< |
|
| 69 |
> |
fBeta = fAlpha; |
| 70 |
> |
fAlpha = model->calcF(tempX); |
| 71 |
> |
|
| 72 |
> |
prevMinVar = beta; |
| 73 |
> |
fPrevMinVar = fBeta; |
| 74 |
> |
|
| 75 |
|
minVar = alpha; |
| 76 |
< |
fMinVar = model->calcF(tempX); |
| 76 |
> |
fMinVar = fAlpha; |
| 77 |
|
} |
| 78 |
|
|
| 79 |
|
} |
| 100 |
|
double e; |
| 101 |
|
double etemp; |
| 102 |
|
double stepTol2; |
| 103 |
< |
double fLeft, fRight; |
| 103 |
> |
double fLeftVar, fRightVar; |
| 104 |
|
const double goldenRatio = 0.3819660; |
| 105 |
|
vector<double> tempX, currentX; |
| 106 |
|
|
| 110 |
|
|
| 111 |
|
currentX = tempX = model->getX(); |
| 112 |
|
|
| 113 |
< |
tempX = currentX + leftVar * direction; |
| 114 |
< |
fLeft = model->calcF(tempX); |
| 113 |
> |
for (int i = 0; i < tempX.size(); i ++) |
| 114 |
> |
tempX[i] = currentX[i] + direction[i] * leftVar; |
| 115 |
|
|
| 116 |
< |
tempX = currentX + rightVar * direction; |
| 114 |
< |
fRight = model->calcF(tempX); |
| 116 |
> |
fLeftVar = model->calcF(tempX); |
| 117 |
|
|
| 118 |
< |
if(fRight < fLeft) { |
| 119 |
< |
prevMinPoint = rightVar; |
| 120 |
< |
fPrevMinVar = fRight; |
| 118 |
> |
for (int i = 0; i < tempX.size(); i ++) |
| 119 |
> |
tempX[i] = currentX[i] + direction[i] * rightVar; |
| 120 |
> |
|
| 121 |
> |
fRightVar = model->calcF(tempX); |
| 122 |
> |
|
| 123 |
> |
if(fRightVar < fLeftVar) { |
| 124 |
> |
prevMinVar = rightVar; |
| 125 |
> |
fPrevMinVar = fRightVar; |
| 126 |
|
v = leftVar; |
| 127 |
|
fv = fLeftVar; |
| 128 |
|
} |
| 129 |
|
else { |
| 130 |
|
prevMinVar = leftVar; |
| 131 |
< |
fPrevMinVar = fLeft; |
| 131 |
> |
fPrevMinVar = fLeftVar; |
| 132 |
|
v = rightVar; |
| 133 |
< |
fv = fRight; |
| 133 |
> |
fv = fRightVar; |
| 134 |
|
} |
| 135 |
+ |
|
| 136 |
+ |
midVar = (leftVar + rightVar) / 2; |
| 137 |
|
|
| 138 |
< |
for(currentIter = 0; currentIter < maxIteration; currentIter){ |
| 138 |
> |
for(currentIter = 0; currentIter < maxIteration; currentIter++){ |
| 139 |
|
|
| 140 |
|
// a trial parabolic fit |
| 141 |
|
if (fabs(e) > stepTol){ |
| 153 |
|
etemp = e; |
| 154 |
|
e = d; |
| 155 |
|
|
| 156 |
< |
if(fabs(p) >= fabs(0.5*q*etemp)) || p <= q*(leftVar - minVar) || p >= q*(rightVar - minVar)){ |
| 156 |
> |
if(fabs(p) >= fabs(0.5*q*etemp) || p <= q*(leftVar - minVar) || p >= q*(rightVar - minVar)){ |
| 157 |
|
e = minVar >= midVar ? leftVar - minVar : rightVar - minVar; |
| 158 |
|
d = goldenRatio * e; |
| 159 |
|
} |
| 172 |
|
|
| 173 |
|
u = fabs(d) >= stepTol ? minVar + d : minVar + copysign(d, stepTol); |
| 174 |
|
|
| 175 |
< |
tempX = currentX + u * direction; |
| 176 |
< |
fu = model->calcF(); |
| 175 |
> |
for (int i = 0; i < tempX.size(); i ++) |
| 176 |
> |
tempX[i] = currentX[i] + direction[i] * u; |
| 177 |
> |
|
| 178 |
> |
fu = model->calcF(tempX); |
| 179 |
|
|
| 180 |
|
if(fu <= fMinVar){ |
| 181 |
|
|
| 207 |
|
} |
| 208 |
|
} |
| 209 |
|
|
| 210 |
< |
midVar = leftVar + rightVar; |
| 210 |
> |
midVar = (leftVar + rightVar) /2; |
| 211 |
|
|
| 212 |
|
if (checkConvergence() > 0){ |
| 213 |
|
minStatus = MINSTATUS_CONVERGE; |
| 218 |
|
|
| 219 |
|
|
| 220 |
|
minStatus = MINSTATUS_MAXITER; |
| 221 |
< |
return; |
| 211 |
< |
|
| 212 |
< |
//----------------------------------------------------------------------------// |
| 213 |
< |
|
| 221 |
> |
return; |
| 222 |
|
} |
| 223 |
|
|
| 224 |
< |
BrentMinimizer::checkConvergence(){ |
| 224 |
> |
int BrentMinimizer::checkConvergence(){ |
| 225 |
|
|
| 226 |
|
if (fabs(minVar - midVar) < stepTol) |
| 227 |
|
return 1; |