1 |
|
#include "Minimizer1D.hpp" |
2 |
< |
void Minimizer1D::Minimize(vector<double>& direction), double left, double right); { |
3 |
< |
setDirection(direction); |
4 |
< |
setRange(left,right); |
5 |
< |
minimize(); |
2 |
> |
#include "math.h" |
3 |
> |
#include "Utility.hpp" |
4 |
> |
GoldenSectionMinimizer::GoldenSectionMinimizer(NLModel* nlp) |
5 |
> |
:Minimizer1D(nlp){ |
6 |
> |
setName("GoldenSection"); |
7 |
|
} |
8 |
|
|
9 |
< |
int Minimizer1D::checkConvergence(){ |
9 |
> |
int GoldenSectionMinimizer::checkConvergence(){ |
10 |
|
|
11 |
|
if ((rightVar - leftVar) < stepTol) |
12 |
< |
return |
12 |
> |
return 1; |
13 |
|
else |
14 |
|
return -1; |
15 |
|
} |
20 |
|
|
21 |
|
const double goldenRatio = 0.618034; |
22 |
|
|
23 |
< |
currentX = model->getX(); |
23 |
> |
tempX = currentX = model->getX(); |
24 |
|
|
25 |
|
alpha = leftVar + (1 - goldenRatio) * (rightVar - leftVar); |
26 |
|
beta = leftVar + goldenRatio * (rightVar - leftVar); |
27 |
|
|
28 |
< |
tempX = currentX + direction * alpha; |
28 |
> |
for (int i = 0; i < tempX.size(); i ++) |
29 |
> |
tempX[i] = currentX[i] + direction[i] * alpha; |
30 |
> |
|
31 |
|
fAlpha = model->calcF(tempX); |
32 |
|
|
33 |
< |
tempX = currentX + direction * beta; |
33 |
> |
for (int i = 0; i < tempX.size(); i ++) |
34 |
> |
tempX[i] = currentX[i] + direction[i] * beta; |
35 |
> |
|
36 |
|
fBeta = model->calcF(tempX); |
37 |
|
|
38 |
|
for(currentIter = 0; currentIter < maxIteration; currentIter++){ |
45 |
|
if (fAlpha > fBeta){ |
46 |
|
leftVar = alpha; |
47 |
|
alpha = beta; |
48 |
+ |
|
49 |
|
beta = leftVar + goldenRatio * (rightVar - leftVar); |
50 |
|
|
51 |
< |
tempX = currentX + beta * direction; |
52 |
< |
|
53 |
< |
prevMinVar = minVar; |
54 |
< |
fPrevMinVar = fMinVar; |
51 |
> |
for (int i = 0; i < tempX.size(); i ++) |
52 |
> |
tempX[i] = currentX[i] + direction[i] * beta; |
53 |
> |
fAlpha = fBeta; |
54 |
> |
fBeta = model->calcF(tempX); |
55 |
|
|
56 |
+ |
prevMinVar = alpha; |
57 |
+ |
fPrevMinVar = fAlpha; |
58 |
|
minVar = beta; |
59 |
< |
fMinVar = model->calcF(tempX); |
52 |
< |
|
59 |
> |
fMinVar = fBeta; |
60 |
|
} |
61 |
|
else{ |
62 |
|
rightVar = beta; |
63 |
|
beta = alpha; |
64 |
+ |
|
65 |
|
alpha = leftVar + (1 - goldenRatio) * (rightVar - leftVar); |
66 |
|
|
67 |
< |
tempX = currentX + alpha * direction; |
67 |
> |
for (int i = 0; i < tempX.size(); i ++) |
68 |
> |
tempX[i] = currentX[i] + direction[i] * alpha; |
69 |
|
|
70 |
< |
prevMinVar = minVar; |
71 |
< |
fPrevMinVar = fMinVar; |
72 |
< |
|
70 |
> |
fBeta = fAlpha; |
71 |
> |
fAlpha = model->calcF(tempX); |
72 |
> |
|
73 |
> |
prevMinVar = beta; |
74 |
> |
fPrevMinVar = fBeta; |
75 |
> |
|
76 |
|
minVar = alpha; |
77 |
< |
fMinVar = model->calcF(tempX); |
77 |
> |
fMinVar = fAlpha; |
78 |
|
} |
79 |
|
|
80 |
|
} |
83 |
|
|
84 |
|
} |
85 |
|
|
86 |
< |
/* |
87 |
< |
* |
86 |
> |
/** |
87 |
> |
* Brent's method is a root-finding algorithm which combines root bracketing, interval bisection, |
88 |
> |
* and inverse quadratic interpolation. |
89 |
|
*/ |
90 |
+ |
BrentMinimizer::BrentMinimizer(NLModel* nlp) |
91 |
+ |
:Minimizer1D(nlp){ |
92 |
+ |
setName("Brent"); |
93 |
+ |
} |
94 |
|
|
95 |
+ |
void BrentMinimizer::minimize(vector<double>& direction, double left, double right){ |
96 |
+ |
|
97 |
+ |
//brent algorithm ascending order |
98 |
+ |
|
99 |
+ |
if (left > right) |
100 |
+ |
setRange(right, left); |
101 |
+ |
else |
102 |
+ |
setRange(left, right); |
103 |
+ |
|
104 |
+ |
setDirection(direction); |
105 |
+ |
|
106 |
+ |
minimize(); |
107 |
+ |
} |
108 |
|
void BrentMinimizer::minimize(){ |
109 |
|
|
110 |
< |
for(currentIter = 0; currentIter < maxIteration; currentIter){ |
110 |
> |
double fu, fv, fw; |
111 |
> |
double p, q, r; |
112 |
> |
double u, v, w; |
113 |
> |
double d; |
114 |
> |
double e; |
115 |
> |
double etemp; |
116 |
> |
double stepTol2; |
117 |
> |
double fLeftVar, fRightVar; |
118 |
> |
const double goldenRatio = 0.3819660; |
119 |
> |
vector<double> tempX, currentX; |
120 |
> |
|
121 |
> |
stepTol2 = 2 * stepTol; |
122 |
|
|
123 |
+ |
e = 0; |
124 |
+ |
d = 0; |
125 |
|
|
126 |
+ |
currentX = model->getX(); |
127 |
+ |
tempX.resize(currentX.size()); |
128 |
|
|
129 |
+ |
|
130 |
|
|
131 |
+ |
|
132 |
+ |
for (int i = 0; i < tempX.size(); i ++) |
133 |
+ |
tempX[i] = currentX[i] + direction[i] * leftVar; |
134 |
+ |
|
135 |
+ |
fLeftVar = model->calcF(tempX); |
136 |
+ |
|
137 |
+ |
for (int i = 0; i < tempX.size(); i ++) |
138 |
+ |
tempX[i] = currentX[i] + direction[i] * rightVar; |
139 |
+ |
|
140 |
+ |
fRightVar = model->calcF(tempX); |
141 |
+ |
|
142 |
+ |
// find an interior point left < interior < right which satisfy f(left) > f(interior) and f(right) > f(interior) |
143 |
+ |
|
144 |
+ |
bracket(minVar, fMinVar, leftVar, fLeftVar, rightVar, fRightVar); |
145 |
+ |
|
146 |
+ |
if(fRightVar < fLeftVar) { |
147 |
+ |
prevMinVar = rightVar; |
148 |
+ |
fPrevMinVar = fRightVar; |
149 |
+ |
v = leftVar; |
150 |
+ |
fv = fLeftVar; |
151 |
|
} |
152 |
+ |
else { |
153 |
+ |
prevMinVar = leftVar; |
154 |
+ |
fPrevMinVar = fLeftVar; |
155 |
+ |
v = rightVar; |
156 |
+ |
fv = fRightVar; |
157 |
+ |
} |
158 |
+ |
|
159 |
+ |
minVar = rightVar+ goldenRatio * (rightVar - leftVar); |
160 |
|
|
161 |
+ |
for (int i = 0; i < tempX.size(); i ++) |
162 |
+ |
tempX[i] = currentX[i] + direction[i] * minVar; |
163 |
|
|
164 |
+ |
fMinVar = model->calcF(tempX); |
165 |
+ |
|
166 |
+ |
prevMinVar = v = minVar; |
167 |
+ |
fPrevMinVar = fv = fMinVar; |
168 |
+ |
midVar = (leftVar + rightVar) / 2; |
169 |
+ |
|
170 |
+ |
for(currentIter = 0; currentIter < maxIteration; currentIter++){ |
171 |
+ |
|
172 |
+ |
//construct a trial parabolic fit |
173 |
+ |
if (fabs(e) > stepTol){ |
174 |
+ |
|
175 |
+ |
r = (minVar - prevMinVar) * (fMinVar - fv); |
176 |
+ |
q = (minVar - v) * (fMinVar - fPrevMinVar); |
177 |
+ |
p = (minVar - v) *q -(minVar - prevMinVar)*r; |
178 |
+ |
q = 2.0 *(q-r); |
179 |
+ |
|
180 |
+ |
if (q > 0.0) |
181 |
+ |
p = -p; |
182 |
+ |
|
183 |
+ |
q = fabs(q); |
184 |
+ |
|
185 |
+ |
etemp = e; |
186 |
+ |
e = d; |
187 |
+ |
|
188 |
+ |
if(fabs(p) >= fabs(0.5*q*etemp) || p <= q*(leftVar - minVar) || p >= q*(rightVar - minVar)){ |
189 |
+ |
//reject parabolic fit and use golden section step instead |
190 |
+ |
e = minVar >= midVar ? leftVar - minVar : rightVar - minVar; |
191 |
+ |
d = goldenRatio * e; |
192 |
+ |
} |
193 |
+ |
else{ |
194 |
+ |
|
195 |
+ |
//take the parabolic step |
196 |
+ |
d = p/q; |
197 |
+ |
u = minVar + d; |
198 |
+ |
if ( u - leftVar < stepTol2 || rightVar - u < stepTol2) |
199 |
+ |
d = midVar > minVar ? stepTol : - stepTol; |
200 |
+ |
} |
201 |
+ |
|
202 |
+ |
} |
203 |
+ |
else{ |
204 |
+ |
e = minVar >= midVar ? leftVar -minVar : rightVar-minVar; |
205 |
+ |
d = goldenRatio * e; |
206 |
+ |
} |
207 |
+ |
|
208 |
+ |
u = fabs(d) >= stepTol ? minVar + d : minVar + copysign(stepTol, d); |
209 |
+ |
|
210 |
+ |
for (int i = 0; i < tempX.size(); i ++) |
211 |
+ |
tempX[i] = currentX[i] + direction[i] * u; |
212 |
+ |
|
213 |
+ |
fu = model->calcF(tempX); |
214 |
+ |
|
215 |
+ |
if(fu <= fMinVar){ |
216 |
+ |
|
217 |
+ |
if(u >= minVar) |
218 |
+ |
leftVar = minVar; |
219 |
+ |
else |
220 |
+ |
rightVar = minVar; |
221 |
+ |
|
222 |
+ |
v = prevMinVar; |
223 |
+ |
prevMinVar = minVar; |
224 |
+ |
minVar = u; |
225 |
+ |
|
226 |
+ |
fv = fPrevMinVar; |
227 |
+ |
fPrevMinVar = fMinVar; |
228 |
+ |
fMinVar = fu; |
229 |
+ |
|
230 |
+ |
} |
231 |
+ |
else{ |
232 |
+ |
if (u < minVar) leftVar = u; |
233 |
+ |
else rightVar= u; |
234 |
+ |
|
235 |
+ |
if(fu <= fPrevMinVar || prevMinVar == minVar) { |
236 |
+ |
v = prevMinVar; |
237 |
+ |
fv = fPrevMinVar; |
238 |
+ |
prevMinVar = u; |
239 |
+ |
fPrevMinVar = fu; |
240 |
+ |
} |
241 |
+ |
else if ( fu <= fv || v == minVar || v == prevMinVar ) { |
242 |
+ |
v = u; |
243 |
+ |
fv = fu; |
244 |
+ |
} |
245 |
+ |
} |
246 |
+ |
|
247 |
+ |
midVar = (leftVar + rightVar) /2; |
248 |
+ |
|
249 |
+ |
if (checkConvergence() > 0){ |
250 |
+ |
minStatus = MINSTATUS_CONVERGE; |
251 |
+ |
return; |
252 |
+ |
} |
253 |
+ |
|
254 |
+ |
} |
255 |
+ |
|
256 |
+ |
|
257 |
|
minStatus = MINSTATUS_MAXITER; |
258 |
< |
return; |
258 |
> |
return; |
259 |
|
} |
260 |
+ |
|
261 |
+ |
int BrentMinimizer::checkConvergence(){ |
262 |
+ |
|
263 |
+ |
if (fabs(minVar - midVar) < stepTol) |
264 |
+ |
return 1; |
265 |
+ |
else |
266 |
+ |
return -1; |
267 |
+ |
} |
268 |
+ |
|
269 |
+ |
/******************************************************* |
270 |
+ |
* Bracketing a minimum of a real function Y=F(X) * |
271 |
+ |
* using MNBRAK subroutine * |
272 |
+ |
* ---------------------------------------------------- * |
273 |
+ |
* REFERENCE: "Numerical recipes, The Art of Scientific * |
274 |
+ |
* Computing by W.H. Press, B.P. Flannery, * |
275 |
+ |
* S.A. Teukolsky and W.T. Vetterling, * |
276 |
+ |
* Cambridge university Press, 1986". * |
277 |
+ |
* ---------------------------------------------------- * |
278 |
+ |
* We have different situation here, we want to limit the |
279 |
+ |
********************************************************/ |
280 |
+ |
void BrentMinimizer::bracket(double& cx, double& fc, double& ax, double& fa, double& bx, double& fb){ |
281 |
+ |
vector<double> currentX; |
282 |
+ |
vector<double> tempX; |
283 |
+ |
double u, r, q; |
284 |
+ |
double fu; |
285 |
+ |
double ulim; |
286 |
+ |
const double TINY = 1.0e-20; |
287 |
+ |
const double GLIMIT = 100.0; |
288 |
+ |
const double GoldenRatio = 0.618034; |
289 |
+ |
const int MAXBRACKETITER = 100; |
290 |
+ |
currentX = model->getX(); |
291 |
+ |
tempX.resize(currentX.size()); |
292 |
+ |
|
293 |
+ |
if (fb > fa){ |
294 |
+ |
swap(fa, fb); |
295 |
+ |
swap(ax, bx); |
296 |
+ |
} |
297 |
+ |
|
298 |
+ |
cx = bx + GoldenRatio * (bx - ax); |
299 |
+ |
|
300 |
+ |
fc = model->calcF(tempX); |
301 |
+ |
|
302 |
+ |
for(int k = 0; k < MAXBRACKETITER && (fb < fc); k++){ |
303 |
+ |
|
304 |
+ |
r = (bx - ax) * (fb -fc); |
305 |
+ |
q = (bx - cx) * (fb - fa); |
306 |
+ |
u = bx -((bx - cx)*q - (bx-ax)*r)/(2.0 * copysign(max(fabs(q-r), TINY) ,q-r)); |
307 |
+ |
ulim = bx + GLIMIT *(cx - bx); |
308 |
+ |
|
309 |
+ |
for (int i = 0; i < tempX.size(); i ++) |
310 |
+ |
tempX[i] = currentX[i] + direction[i] * u; |
311 |
+ |
|
312 |
+ |
if ((bx -u) * (u -cx) > 0){ |
313 |
+ |
fu = model->calcF(tempX); |
314 |
+ |
|
315 |
+ |
if (fu < fc){ |
316 |
+ |
ax = bx; |
317 |
+ |
bx = u; |
318 |
+ |
fa = fb; |
319 |
+ |
fb = fu; |
320 |
+ |
} |
321 |
+ |
else if (fu > fb){ |
322 |
+ |
cx = u; |
323 |
+ |
fc = fu; |
324 |
+ |
return; |
325 |
+ |
} |
326 |
+ |
} |
327 |
+ |
else if ((cx - u)* (u - ulim) > 0.0){ |
328 |
+ |
|
329 |
+ |
fu = model->calcF(tempX); |
330 |
+ |
|
331 |
+ |
if (fu < fc){ |
332 |
+ |
bx = cx; |
333 |
+ |
cx = u; |
334 |
+ |
u = cx + GoldenRatio * (cx - bx); |
335 |
+ |
|
336 |
+ |
fb = fc; |
337 |
+ |
fc = fu; |
338 |
+ |
|
339 |
+ |
for (int i = 0; i < tempX.size(); i ++) |
340 |
+ |
tempX[i] = currentX[i] + direction[i] * u; |
341 |
+ |
|
342 |
+ |
fu = model->calcF(tempX); |
343 |
+ |
} |
344 |
+ |
} |
345 |
+ |
else if ((u-ulim) * (ulim - cx) >= 0.0){ |
346 |
+ |
u = ulim; |
347 |
+ |
|
348 |
+ |
fu = model->calcF(tempX); |
349 |
+ |
|
350 |
+ |
} |
351 |
+ |
else { |
352 |
+ |
u = cx + GoldenRatio * (cx -bx); |
353 |
+ |
|
354 |
+ |
fu = model->calcF(tempX); |
355 |
+ |
} |
356 |
+ |
|
357 |
+ |
ax = bx; |
358 |
+ |
bx = cx; |
359 |
+ |
cx = u; |
360 |
+ |
|
361 |
+ |
fa = fb; |
362 |
+ |
fb = fc; |
363 |
+ |
fc = fu; |
364 |
+ |
|
365 |
+ |
} |
366 |
+ |
|
367 |
+ |
} |
368 |
+ |
|