1 |
#include "Minimizer1D.hpp"
|
2 |
#include "math.h"
|
3 |
#include "Utility.hpp"
|
4 |
GoldenSectionMinimizer::GoldenSectionMinimizer(NLModel* nlp)
|
5 |
:Minimizer1D(nlp){
|
6 |
setName("GoldenSection");
|
7 |
}
|
8 |
|
9 |
int GoldenSectionMinimizer::checkConvergence(){
|
10 |
|
11 |
if ((rightVar - leftVar) < stepTol)
|
12 |
return 1;
|
13 |
else
|
14 |
return -1;
|
15 |
}
|
16 |
void GoldenSectionMinimizer::minimize(){
|
17 |
vector<double> tempX;
|
18 |
vector <double> currentX;
|
19 |
|
20 |
const double goldenRatio = 0.618034;
|
21 |
|
22 |
tempX = currentX = model->getX();
|
23 |
|
24 |
alpha = leftVar + (1 - goldenRatio) * (rightVar - leftVar);
|
25 |
beta = leftVar + goldenRatio * (rightVar - leftVar);
|
26 |
|
27 |
for (int i = 0; i < tempX.size(); i ++)
|
28 |
tempX[i] = currentX[i] + direction[i] * alpha;
|
29 |
|
30 |
fAlpha = model->calcF(tempX);
|
31 |
|
32 |
for (int i = 0; i < tempX.size(); i ++)
|
33 |
tempX[i] = currentX[i] + direction[i] * beta;
|
34 |
|
35 |
fBeta = model->calcF(tempX);
|
36 |
|
37 |
for(currentIter = 0; currentIter < maxIteration; currentIter++){
|
38 |
|
39 |
if (checkConvergence() > 0){
|
40 |
minStatus = MINSTATUS_CONVERGE;
|
41 |
return;
|
42 |
}
|
43 |
|
44 |
if (fAlpha > fBeta){
|
45 |
leftVar = alpha;
|
46 |
alpha = beta;
|
47 |
|
48 |
beta = leftVar + goldenRatio * (rightVar - leftVar);
|
49 |
|
50 |
for (int i = 0; i < tempX.size(); i ++)
|
51 |
tempX[i] = currentX[i] + direction[i] * beta;
|
52 |
fAlpha = fBeta;
|
53 |
fBeta = model->calcF(tempX);
|
54 |
|
55 |
prevMinVar = alpha;
|
56 |
fPrevMinVar = fAlpha;
|
57 |
minVar = beta;
|
58 |
fMinVar = fBeta;
|
59 |
}
|
60 |
else{
|
61 |
rightVar = beta;
|
62 |
beta = alpha;
|
63 |
|
64 |
alpha = leftVar + (1 - goldenRatio) * (rightVar - leftVar);
|
65 |
|
66 |
for (int i = 0; i < tempX.size(); i ++)
|
67 |
tempX[i] = currentX[i] + direction[i] * alpha;
|
68 |
|
69 |
fBeta = fAlpha;
|
70 |
fAlpha = model->calcF(tempX);
|
71 |
|
72 |
prevMinVar = beta;
|
73 |
fPrevMinVar = fBeta;
|
74 |
|
75 |
minVar = alpha;
|
76 |
fMinVar = fAlpha;
|
77 |
}
|
78 |
|
79 |
}
|
80 |
|
81 |
minStatus = MINSTATUS_MAXITER;
|
82 |
|
83 |
}
|
84 |
|
85 |
/**
|
86 |
* Brent's method is a root-finding algorithm which combines root bracketing, interval bisection,
|
87 |
* and inverse quadratic interpolation.
|
88 |
*/
|
89 |
BrentMinimizer::BrentMinimizer(NLModel* nlp)
|
90 |
:Minimizer1D(nlp){
|
91 |
setName("Brent");
|
92 |
}
|
93 |
|
94 |
void BrentMinimizer::minimize(){
|
95 |
|
96 |
double fu, fv, fw;
|
97 |
double p, q, r;
|
98 |
double u, v, w;
|
99 |
double d;
|
100 |
double e;
|
101 |
double etemp;
|
102 |
double stepTol2;
|
103 |
double fLeftVar, fRightVar;
|
104 |
const double goldenRatio = 0.3819660;
|
105 |
vector<double> tempX, currentX;
|
106 |
|
107 |
stepTol2 = 2 * stepTol;
|
108 |
e = 0;
|
109 |
d = 0;
|
110 |
|
111 |
currentX = tempX = model->getX();
|
112 |
|
113 |
for (int i = 0; i < tempX.size(); i ++)
|
114 |
tempX[i] = currentX[i] + direction[i] * leftVar;
|
115 |
|
116 |
fLeftVar = model->calcF(tempX);
|
117 |
|
118 |
for (int i = 0; i < tempX.size(); i ++)
|
119 |
tempX[i] = currentX[i] + direction[i] * rightVar;
|
120 |
|
121 |
fRightVar = model->calcF(tempX);
|
122 |
|
123 |
if(fRightVar < fLeftVar) {
|
124 |
prevMinVar = rightVar;
|
125 |
fPrevMinVar = fRightVar;
|
126 |
v = leftVar;
|
127 |
fv = fLeftVar;
|
128 |
}
|
129 |
else {
|
130 |
prevMinVar = leftVar;
|
131 |
fPrevMinVar = fLeftVar;
|
132 |
v = rightVar;
|
133 |
fv = fRightVar;
|
134 |
}
|
135 |
|
136 |
midVar = (leftVar + rightVar) / 2;
|
137 |
|
138 |
for(currentIter = 0; currentIter < maxIteration; currentIter++){
|
139 |
|
140 |
// a trial parabolic fit
|
141 |
if (fabs(e) > stepTol){
|
142 |
|
143 |
r = (minVar - prevMinVar) * (fMinVar - fv);
|
144 |
q = (minVar - v) * (fMinVar - fPrevMinVar);
|
145 |
p = (minVar - v) *q -(minVar - prevMinVar)*r;
|
146 |
q = 2.0 *(q-r);
|
147 |
|
148 |
if (q > 0.0)
|
149 |
p = -p;
|
150 |
|
151 |
q = fabs(q);
|
152 |
|
153 |
etemp = e;
|
154 |
e = d;
|
155 |
|
156 |
if(fabs(p) >= fabs(0.5*q*etemp) || p <= q*(leftVar - minVar) || p >= q*(rightVar - minVar)){
|
157 |
e = minVar >= midVar ? leftVar - minVar : rightVar - minVar;
|
158 |
d = goldenRatio * e;
|
159 |
}
|
160 |
else{
|
161 |
d = p/q;
|
162 |
u = minVar + d;
|
163 |
if ( u - leftVar < stepTol2 || rightVar - u < stepTol2)
|
164 |
d = midVar > minVar ? stepTol : - stepTol;
|
165 |
}
|
166 |
}
|
167 |
//golden section
|
168 |
else{
|
169 |
e = minVar >=midVar? leftVar - minVar : rightVar - minVar;
|
170 |
d =goldenRatio * e;
|
171 |
}
|
172 |
|
173 |
u = fabs(d) >= stepTol ? minVar + d : minVar + copysign(d, stepTol);
|
174 |
|
175 |
for (int i = 0; i < tempX.size(); i ++)
|
176 |
tempX[i] = currentX[i] + direction[i] * u;
|
177 |
|
178 |
fu = model->calcF(tempX);
|
179 |
|
180 |
if(fu <= fMinVar){
|
181 |
|
182 |
if(u >= minVar)
|
183 |
leftVar = minVar;
|
184 |
else
|
185 |
rightVar = minVar;
|
186 |
|
187 |
v = prevMinVar;
|
188 |
fv = fPrevMinVar;
|
189 |
prevMinVar = minVar;
|
190 |
fPrevMinVar = fMinVar;
|
191 |
minVar = u;
|
192 |
fMinVar = fu;
|
193 |
|
194 |
}
|
195 |
else{
|
196 |
if (u < minVar) leftVar = u;
|
197 |
else rightVar= u;
|
198 |
if(fu <= fPrevMinVar || prevMinVar == minVar) {
|
199 |
v = prevMinVar;
|
200 |
fv = fPrevMinVar;
|
201 |
prevMinVar = u;
|
202 |
fPrevMinVar = fu;
|
203 |
}
|
204 |
else if ( fu <= fv || v == minVar || v == prevMinVar ) {
|
205 |
v = u;
|
206 |
fv = fu;
|
207 |
}
|
208 |
}
|
209 |
|
210 |
midVar = (leftVar + rightVar) /2;
|
211 |
|
212 |
if (checkConvergence() > 0){
|
213 |
minStatus = MINSTATUS_CONVERGE;
|
214 |
return;
|
215 |
}
|
216 |
|
217 |
}
|
218 |
|
219 |
|
220 |
minStatus = MINSTATUS_MAXITER;
|
221 |
return;
|
222 |
}
|
223 |
|
224 |
int BrentMinimizer::checkConvergence(){
|
225 |
|
226 |
if (fabs(minVar - midVar) < stepTol)
|
227 |
return 1;
|
228 |
else
|
229 |
return -1;
|
230 |
}
|