1 |
|
#include "Minimizer1D.hpp" |
2 |
< |
void Minimizer1D::Minimize(vector<double>& direction), double left, double right); { |
2 |
> |
#include "math.h" |
3 |
> |
|
4 |
> |
//----------------------------------------------------------------------------// |
5 |
> |
void Minimizer1D::Minimize(vector<double>& direction, double left, double right){ |
6 |
|
setDirection(direction); |
7 |
|
setRange(left,right); |
8 |
|
minimize(); |
9 |
|
} |
10 |
|
|
11 |
< |
int Minimizer1D::checkConvergence(){ |
11 |
> |
//----------------------------------------------------------------------------// |
12 |
> |
GoldenSectionMinimizer::GoldenSectionMinimizer(NLModel* nlp) |
13 |
> |
:Minimizer1D(nlp){ |
14 |
> |
setName("GoldenSection"); |
15 |
> |
} |
16 |
|
|
17 |
+ |
int GoldenSectionMinimizer::checkConvergence(){ |
18 |
+ |
|
19 |
|
if ((rightVar - leftVar) < stepTol) |
20 |
< |
return |
20 |
> |
return 1; |
21 |
|
else |
22 |
|
return -1; |
23 |
|
} |
15 |
– |
|
24 |
|
void GoldenSectionMinimizer::minimize(){ |
25 |
|
vector<double> tempX; |
26 |
|
vector <double> currentX; |
79 |
|
|
80 |
|
} |
81 |
|
|
82 |
< |
/* |
83 |
< |
* |
82 |
> |
/** |
83 |
> |
* Brent's method is a root-finding algorithm which combines root bracketing, interval bisection, |
84 |
> |
* and inverse quadratic interpolation. |
85 |
|
*/ |
86 |
+ |
BrentMinimizer::BrentMinimizer(NLModel* nlp) |
87 |
+ |
:Minimizer1D(nlp){ |
88 |
+ |
setName("Brent"); |
89 |
+ |
} |
90 |
|
|
91 |
|
void BrentMinimizer::minimize(){ |
92 |
|
|
93 |
+ |
double fu, fv, fw; |
94 |
+ |
double p, q, r; |
95 |
+ |
double u, v, w; |
96 |
+ |
double d; |
97 |
+ |
double e; |
98 |
+ |
double etemp; |
99 |
+ |
double stepTol2; |
100 |
+ |
double fLeftVar, fRightVar; |
101 |
+ |
const double goldenRatio = 0.3819660; |
102 |
+ |
vector<double> tempX, currentX; |
103 |
+ |
|
104 |
+ |
stepTol2 = 2 * stepTol; |
105 |
+ |
e = 0; |
106 |
+ |
d = 0; |
107 |
+ |
|
108 |
+ |
currentX = tempX = model->getX(); |
109 |
+ |
|
110 |
+ |
tempX = currentX + leftVar * direction; |
111 |
+ |
fLeftVar = model->calcF(tempX); |
112 |
+ |
|
113 |
+ |
tempX = currentX + rightVar * direction; |
114 |
+ |
fRightVar = model->calcF(tempX); |
115 |
+ |
|
116 |
+ |
if(fRightVar < fLeftVar) { |
117 |
+ |
prevMinVar = rightVar; |
118 |
+ |
fPrevMinVar = fRightVar; |
119 |
+ |
v = leftVar; |
120 |
+ |
fv = fLeftVar; |
121 |
+ |
} |
122 |
+ |
else { |
123 |
+ |
prevMinVar = leftVar; |
124 |
+ |
fPrevMinVar = fLeftVar; |
125 |
+ |
v = rightVar; |
126 |
+ |
fv = fRightVar; |
127 |
+ |
} |
128 |
+ |
|
129 |
+ |
midVar = leftVar + rightVar; |
130 |
+ |
|
131 |
|
for(currentIter = 0; currentIter < maxIteration; currentIter){ |
132 |
|
|
133 |
+ |
// a trial parabolic fit |
134 |
+ |
if (fabs(e) > stepTol){ |
135 |
|
|
136 |
+ |
r = (minVar - prevMinVar) * (fMinVar - fv); |
137 |
+ |
q = (minVar - v) * (fMinVar - fPrevMinVar); |
138 |
+ |
p = (minVar - v) *q -(minVar - prevMinVar)*r; |
139 |
+ |
q = 2.0 *(q-r); |
140 |
|
|
141 |
+ |
if (q > 0.0) |
142 |
+ |
p = -p; |
143 |
|
|
144 |
+ |
q = fabs(q); |
145 |
+ |
|
146 |
+ |
etemp = e; |
147 |
+ |
e = d; |
148 |
+ |
|
149 |
+ |
if(fabs(p) >= fabs(0.5*q*etemp) || p <= q*(leftVar - minVar) || p >= q*(rightVar - minVar)){ |
150 |
+ |
e = minVar >= midVar ? leftVar - minVar : rightVar - minVar; |
151 |
+ |
d = goldenRatio * e; |
152 |
+ |
} |
153 |
+ |
else{ |
154 |
+ |
d = p/q; |
155 |
+ |
u = minVar + d; |
156 |
+ |
if ( u - leftVar < stepTol2 || rightVar - u < stepTol2) |
157 |
+ |
d = midVar > minVar ? stepTol : - stepTol; |
158 |
+ |
} |
159 |
+ |
} |
160 |
+ |
//golden section |
161 |
+ |
else{ |
162 |
+ |
e = minVar >=midVar? leftVar - minVar : rightVar - minVar; |
163 |
+ |
d =goldenRatio * e; |
164 |
+ |
} |
165 |
+ |
|
166 |
+ |
u = fabs(d) >= stepTol ? minVar + d : minVar + copysign(d, stepTol); |
167 |
+ |
|
168 |
+ |
tempX = currentX + u * direction; |
169 |
+ |
fu = model->calcF(); |
170 |
+ |
|
171 |
+ |
if(fu <= fMinVar){ |
172 |
+ |
|
173 |
+ |
if(u >= minVar) |
174 |
+ |
leftVar = minVar; |
175 |
+ |
else |
176 |
+ |
rightVar = minVar; |
177 |
+ |
|
178 |
+ |
v = prevMinVar; |
179 |
+ |
fv = fPrevMinVar; |
180 |
+ |
prevMinVar = minVar; |
181 |
+ |
fPrevMinVar = fMinVar; |
182 |
+ |
minVar = u; |
183 |
+ |
fMinVar = fu; |
184 |
+ |
|
185 |
+ |
} |
186 |
+ |
else{ |
187 |
+ |
if (u < minVar) leftVar = u; |
188 |
+ |
else rightVar= u; |
189 |
+ |
if(fu <= fPrevMinVar || prevMinVar == minVar) { |
190 |
+ |
v = prevMinVar; |
191 |
+ |
fv = fPrevMinVar; |
192 |
+ |
prevMinVar = u; |
193 |
+ |
fPrevMinVar = fu; |
194 |
+ |
} |
195 |
+ |
else if ( fu <= fv || v == minVar || v == prevMinVar ) { |
196 |
+ |
v = u; |
197 |
+ |
fv = fu; |
198 |
+ |
} |
199 |
+ |
} |
200 |
+ |
|
201 |
+ |
midVar = leftVar + rightVar; |
202 |
+ |
|
203 |
+ |
if (checkConvergence() > 0){ |
204 |
+ |
minStatus = MINSTATUS_CONVERGE; |
205 |
+ |
return; |
206 |
+ |
} |
207 |
+ |
|
208 |
|
} |
209 |
|
|
210 |
|
|
211 |
|
minStatus = MINSTATUS_MAXITER; |
212 |
< |
return; |
212 |
> |
return; |
213 |
|
} |
214 |
+ |
|
215 |
+ |
int BrentMinimizer::checkConvergence(){ |
216 |
+ |
|
217 |
+ |
if (fabs(minVar - midVar) < stepTol) |
218 |
+ |
return 1; |
219 |
+ |
else |
220 |
+ |
return -1; |
221 |
+ |
} |