| 1 | #include <cmath> | 
| 2 | #include "Mat3x3d.hpp" | 
| 3 | #include "Vector3d.hpp" | 
| 4 | #include "Quaternion.hpp" | 
| 5 | #include "Euler3.hpp" | 
| 6 |  | 
| 7 | Mat3x3d::Mat3x3d(const Vector3d& v1, const Vector3d& v2, const Vector3d& v3){ | 
| 8 | element[0][0] = v1.x; | 
| 9 | element[0][1] = v1.y; | 
| 10 | element[0][2] = v1.z; | 
| 11 |  | 
| 12 | element[1][0] = v2.x; | 
| 13 | element[1][1] = v2.y; | 
| 14 | element[1][2] = v2.z; | 
| 15 |  | 
| 16 | element[2][0] = v3.x; | 
| 17 | element[2][1] = v3.y; | 
| 18 | element[2][2] = v3.z; | 
| 19 | } | 
| 20 | Mat3x3d::Mat3x3d(const Quaternion& q){ | 
| 21 |  | 
| 22 | double q0Sqr; | 
| 23 | double q1Sqr; | 
| 24 | double q2Sqr; | 
| 25 | double q3Sqr; | 
| 26 |  | 
| 27 | q0Sqr = q.quat[0] * q.quat[0]; | 
| 28 | q1Sqr = q.quat[1] * q.quat[1]; | 
| 29 | q2Sqr = q.quat[2] * q.quat[2]; | 
| 30 | q3Sqr = q.quat[3] * q.quat[3]; | 
| 31 |  | 
| 32 |  | 
| 33 | element[0][0]= q0Sqr + q1Sqr - q2Sqr - q3Sqr; | 
| 34 | element[0][1] = 2.0 * ( q.quat[1] * q.quat[2] + q.quat[0] * q.quat[3] ); | 
| 35 | element[0][2] = 2.0 * ( q.quat[1] * q.quat[3] - q.quat[0] * q.quat[2] ); | 
| 36 |  | 
| 37 | element[1][0] = 2.0 * ( q.quat[1] * q.quat[2] - q.quat[0] * q.quat[3] ); | 
| 38 | element[1][1] = q0Sqr - q1Sqr + q2Sqr - q3Sqr; | 
| 39 | element[1][2] = 2.0 * ( q.quat[2] * q.quat[3] + q.quat[0] * q.quat[1] ); | 
| 40 |  | 
| 41 | element[2][0] = 2.0 * ( q.quat[1] * q.quat[3] + q.quat[0] * q.quat[2] ); | 
| 42 | element[2][1] = 2.0 * ( q.quat[2] * q.quat[3] - q.quat[0] * q.quat[1] ); | 
| 43 | element[2][2] = q0Sqr - q1Sqr -q2Sqr +q3Sqr; | 
| 44 |  | 
| 45 | } | 
| 46 |  | 
| 47 | Mat3x3d::Mat3x3d(const Euler3& e){ | 
| 48 | double sinTheta; | 
| 49 | double sinPhi; | 
| 50 | double sinPsi; | 
| 51 | double cosTheta; | 
| 52 | double cosPhi; | 
| 53 | double cosPsi; | 
| 54 |  | 
| 55 | sinTheta = sin(e.theta); | 
| 56 | sinPhi = sin(e.phi); | 
| 57 | sinPsi = sin(e.psi); | 
| 58 |  | 
| 59 | cosTheta = cos(e.theta); | 
| 60 | cosPhi = cos(e.phi); | 
| 61 | cosPsi = cos(e.psi); | 
| 62 |  | 
| 63 | element[0][0] = (cosPhi * cosPsi) - (sinPhi * cosTheta * sinPsi); | 
| 64 | element[0][1] = (sinPhi * cosPsi) + (cosPhi * cosTheta * sinPsi); | 
| 65 | element[0][2] = sinTheta * sinPsi; | 
| 66 |  | 
| 67 | element[1][0] = -(cosPhi * sinPsi) - (sinPhi * cosTheta * cosPsi); | 
| 68 | element[1][1] = -(sinPhi * sinPsi) + (cosPhi * cosTheta * cosPsi); | 
| 69 | element[1][2] = sinTheta * cosPsi; | 
| 70 |  | 
| 71 | element[2][0] = sinPhi * sinTheta; | 
| 72 | element[2][1] = -cosPhi * sinTheta; | 
| 73 | element[2][2] = cosTheta; | 
| 74 | } | 
| 75 |  | 
| 76 | Mat3x3d Mat3x3d::inverse() const{ | 
| 77 |  | 
| 78 | Mat3x3d invMat; | 
| 79 |  | 
| 80 | double determinant = det(); | 
| 81 |  | 
| 82 | invMat.element[0][0] = element[1][1]*element[2][2] - element[1][2]*element[2][1]; | 
| 83 | invMat.element[1][0] = element[1][2]*element[2][0] - element[1][0]*element[2][2]; | 
| 84 | invMat.element[2][0] = element[1][0]*element[2][1] - element[1][1]*element[2][0]; | 
| 85 | invMat.element[0][1] = element[2][1]*element[0][2] - element[2][2]*element[0][1]; | 
| 86 | invMat.element[1][1] = element[2][2]*element[0][0] - element[2][0]*element[0][2]; | 
| 87 | invMat.element[2][1] = element[2][0]*element[0][1] - element[2][1]*element[0][0]; | 
| 88 | invMat.element[0][2] = element[0][1]*element[1][2] - element[0][2]*element[1][1]; | 
| 89 | invMat.element[1][2] = element[0][2]*element[1][0] - element[0][0]*element[1][2]; | 
| 90 | invMat.element[2][2] = element[0][0]*element[1][1] - element[0][1]*element[1][0]; | 
| 91 |  | 
| 92 | invMat /= determinant; | 
| 93 |  | 
| 94 | return(invMat); | 
| 95 | } | 
| 96 |  | 
| 97 | Mat3x3d Mat3x3d::transpose(void) const{ | 
| 98 | Mat3x3d transposeMat; | 
| 99 |  | 
| 100 | for(unsigned int i=0; i<3; i++) | 
| 101 | for(unsigned int j=0; j<3; j++) | 
| 102 | transposeMat.element[i][j] = element[j][i]; | 
| 103 |  | 
| 104 | return(transposeMat); | 
| 105 |  | 
| 106 | } | 
| 107 |  | 
| 108 | double Mat3x3d::det() const{ | 
| 109 | double x; | 
| 110 | double y; | 
| 111 | double z; | 
| 112 |  | 
| 113 | x = element[0][0] * (element[1][1] * element[2][2] - element[1][2] * element[2][1]); | 
| 114 | y = element[0][1] * (element[1][2] * element[2][0] - element[1][0] * element[2][2]); | 
| 115 | z = element[0][2] * (element[1][0] * element[2][1] - element[1][1] * element[2][0]); | 
| 116 |  | 
| 117 | return(x + y + z); | 
| 118 | } | 
| 119 |  | 
| 120 | void Mat3x3d::diagonalize(Vector3d& v, Mat3x3d& m){ | 
| 121 | diagonalize(v.vec, m.element); | 
| 122 | } | 
| 123 |  | 
| 124 | void Mat3x3d::diagonalize(Vector3d& v, double m[3][3]){ | 
| 125 | diagonalize(v.vec, m); | 
| 126 | } | 
| 127 |  | 
| 128 | void Mat3x3d::diagonalize(double v[3], Mat3x3d& m){ | 
| 129 | diagonalize(v, m.element); | 
| 130 | } | 
| 131 |  | 
| 132 | void Mat3x3d::diagonalize(double v[3], double m[3][3]){ | 
| 133 |  | 
| 134 | } | 
| 135 |  | 
| 136 | Quaternion Mat3x3d::toQuaternion(){ | 
| 137 | Quaternion q; | 
| 138 | double t, s; | 
| 139 | double ad1, ad2, ad3; | 
| 140 |  | 
| 141 | t = element[0][0] + element[1][1] + element[2][2] + 1.0; | 
| 142 | if( t > 0.0 ){ | 
| 143 |  | 
| 144 | s = 0.5 / sqrt( t ); | 
| 145 | q.quat[0] = 0.25 / s; | 
| 146 | q.quat[1] = (element[1][2] - element[2][1]) * s; | 
| 147 | q.quat[2] = (element[2][0] - element[0][2]) * s; | 
| 148 | q.quat[3] = (element[0][1] - element[1][0]) * s; | 
| 149 | } | 
| 150 | else{ | 
| 151 |  | 
| 152 | ad1 = fabs( element[0][0] ); | 
| 153 | ad2 = fabs( element[1][1] ); | 
| 154 | ad3 = fabs( element[2][2] ); | 
| 155 |  | 
| 156 | if( ad1 >= ad2 && ad1 >= ad3 ){ | 
| 157 | s = 2.0 * sqrt( 1.0 + element[0][0] - element[1][1] - element[2][2] ); | 
| 158 | q.quat[0] = (element[1][2] + element[2][1]) / s; | 
| 159 | q.quat[1] = 0.5 / s; | 
| 160 | q.quat[2] = (element[0][1] + element[1][0]) / s; | 
| 161 | q.quat[3] = (element[0][2] + element[2][0]) / s; | 
| 162 | } | 
| 163 | else if( ad2 >= ad1 && ad2 >= ad3 ){ | 
| 164 | s = sqrt( 1.0 + element[1][1] - element[0][0] - element[2][2] ) * 2.0; | 
| 165 | q.quat[0] = (element[0][2] + element[2][0]) / s; | 
| 166 | q.quat[1] = (element[0][1] + element[1][0]) / s; | 
| 167 | q.quat[2] = 0.5 / s; | 
| 168 | q.quat[3] = (element[1][2] + element[2][1]) / s; | 
| 169 | } | 
| 170 | else{ | 
| 171 | s = sqrt( 1.0 + element[2][2] - element[0][0] - element[1][1] ) * 2.0; | 
| 172 | q.quat[0] = (element[0][1] + element[1][0]) / s; | 
| 173 | q.quat[1] = (element[0][2] + element[2][0]) / s; | 
| 174 | q.quat[2] = (element[1][2] + element[2][1]) / s; | 
| 175 | q.quat[3] = 0.5 / s; | 
| 176 | } | 
| 177 | } | 
| 178 | return q; | 
| 179 | } | 
| 180 |  | 
| 181 | Euler3 Mat3x3d::toEuler(){ | 
| 182 | // We use so-called "x-convention", which is the most common definition. | 
| 183 | // In this convention, the rotation given by Euler angles (phi, theta, psi), where the first | 
| 184 | // rotation is by an angle phi about the z-axis, the second is by an angle | 
| 185 | // theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the | 
| 186 | //z-axis (again). | 
| 187 |  | 
| 188 | Euler3 e; | 
| 189 | double cosTheta; | 
| 190 | double sinTheta; | 
| 191 | const double eps = 1.0e-8; | 
| 192 | // set the tolerance for Euler angles and rotation elements | 
| 193 |  | 
| 194 | e.theta = acos(min(1.0,max(-1.0, element[2][2]))); | 
| 195 | cosTheta = element[2][2]; | 
| 196 | sinTheta = sqrt(1.0 - cosTheta * cosTheta); | 
| 197 |  | 
| 198 | // when sin(theta) is close to 0, we need to consider singularity | 
| 199 | // In this case, we can assign an arbitary value to phi (or psi), and then determine | 
| 200 | // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 | 
| 201 | // in cases of singularity. | 
| 202 | // we use atan2 instead of atan, since atan2 will give us -Pi to Pi. | 
| 203 | // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never | 
| 204 | // change the sign of both of the parameters passed to atan2. | 
| 205 |  | 
| 206 | if (fabs(sinTheta) <= eps){ | 
| 207 | e.psi = 0.0; | 
| 208 | //e.phi = atan2(-Amat[Ayx], Amat[Axx]); | 
| 209 | e.phi = atan2(-element[1][0], element[0][0]); | 
| 210 | } | 
| 211 | // we only have one unique solution | 
| 212 | else{ | 
| 213 | //e.phi = atan2(Amat[Azx], -Amat[Azy]); | 
| 214 | //e.psi = atan2(Amat[Axz], Amat[Ayz]); | 
| 215 | e.phi = atan2(element[2][0], -element[2][1]); | 
| 216 | e.psi = atan2(element[0][2], -element[1][2]); | 
| 217 | } | 
| 218 |  | 
| 219 | //wrap phi and psi, make sure they are in the range from 0 to 2*Pi | 
| 220 | //if (phi < 0) | 
| 221 | //  phi += M_PI; | 
| 222 |  | 
| 223 | //if (psi < 0) | 
| 224 | //  psi += M_PI | 
| 225 |  | 
| 226 | return e; | 
| 227 | } | 
| 228 |  | 
| 229 |  | 
| 230 | Vector3d operator*(const Mat3x3d& m, const Vector3d& v){ | 
| 231 | Vector3d result; | 
| 232 |  | 
| 233 | result.x = m.element[0][0] * v.x + m.element[0][1] * v.y + m.element[0][2]*v.z; | 
| 234 | result.x = m.element[1][0] * v.x + m.element[1][1] * v.y + m.element[1][2]*v.z; | 
| 235 | result.x = m.element[2][0] * v.x + m.element[2][1] * v.y + m.element[2][2]*v.z; | 
| 236 |  | 
| 237 | return result; | 
| 238 | } |