1 |
#include <cmath> |
2 |
#include "Mat3x3d.hpp" |
3 |
#include "Vector3d.hpp" |
4 |
#include "Quaternion.hpp" |
5 |
#include "Euler3.hpp" |
6 |
|
7 |
Mat3x3d::Mat3x3d(const Vector3d& v1, const Vector3d& v2, const Vector3d& v3){ |
8 |
element[0][0] = v1.x; |
9 |
element[0][1] = v1.y; |
10 |
element[0][2] = v1.z; |
11 |
|
12 |
element[1][0] = v2.x; |
13 |
element[1][1] = v2.y; |
14 |
element[1][2] = v2.z; |
15 |
|
16 |
element[2][0] = v3.x; |
17 |
element[2][1] = v3.y; |
18 |
element[2][2] = v3.z; |
19 |
} |
20 |
Mat3x3d::Mat3x3d(const Quaternion& q){ |
21 |
|
22 |
double q0Sqr; |
23 |
double q1Sqr; |
24 |
double q2Sqr; |
25 |
double q3Sqr; |
26 |
|
27 |
q0Sqr = q.quat[0] * q.quat[0]; |
28 |
q1Sqr = q.quat[1] * q.quat[1]; |
29 |
q2Sqr = q.quat[2] * q.quat[2]; |
30 |
q3Sqr = q.quat[3] * q.quat[3]; |
31 |
|
32 |
|
33 |
element[0][0]= q0Sqr + q1Sqr - q2Sqr - q3Sqr; |
34 |
element[0][1] = 2.0 * ( q.quat[1] * q.quat[2] + q.quat[0] * q.quat[3] ); |
35 |
element[0][2] = 2.0 * ( q.quat[1] * q.quat[3] - q.quat[0] * q.quat[2] ); |
36 |
|
37 |
element[1][0] = 2.0 * ( q.quat[1] * q.quat[2] - q.quat[0] * q.quat[3] ); |
38 |
element[1][1] = q0Sqr - q1Sqr + q2Sqr - q3Sqr; |
39 |
element[1][2] = 2.0 * ( q.quat[2] * q.quat[3] + q.quat[0] * q.quat[1] ); |
40 |
|
41 |
element[2][0] = 2.0 * ( q.quat[1] * q.quat[3] + q.quat[0] * q.quat[2] ); |
42 |
element[2][1] = 2.0 * ( q.quat[2] * q.quat[3] - q.quat[0] * q.quat[1] ); |
43 |
element[2][2] = q0Sqr - q1Sqr -q2Sqr +q3Sqr; |
44 |
|
45 |
} |
46 |
|
47 |
Mat3x3d::Mat3x3d(const Euler3& e){ |
48 |
double sinTheta; |
49 |
double sinPhi; |
50 |
double sinPsi; |
51 |
double cosTheta; |
52 |
double cosPhi; |
53 |
double cosPsi; |
54 |
|
55 |
sinTheta = sin(e.theta); |
56 |
sinPhi = sin(e.phi); |
57 |
sinPsi = sin(e.psi); |
58 |
|
59 |
cosTheta = cos(e.theta); |
60 |
cosPhi = cos(e.phi); |
61 |
cosPsi = cos(e.psi); |
62 |
|
63 |
element[0][0] = (cosPhi * cosPsi) - (sinPhi * cosTheta * sinPsi); |
64 |
element[0][1] = (sinPhi * cosPsi) + (cosPhi * cosTheta * sinPsi); |
65 |
element[0][2] = sinTheta * sinPsi; |
66 |
|
67 |
element[1][0] = -(cosPhi * sinPsi) - (sinPhi * cosTheta * cosPsi); |
68 |
element[1][1] = -(sinPhi * sinPsi) + (cosPhi * cosTheta * cosPsi); |
69 |
element[1][2] = sinTheta * cosPsi; |
70 |
|
71 |
element[2][0] = sinPhi * sinTheta; |
72 |
element[2][1] = -cosPhi * sinTheta; |
73 |
element[2][2] = cosTheta; |
74 |
} |
75 |
|
76 |
Mat3x3d Mat3x3d::inverse() const{ |
77 |
|
78 |
Mat3x3d invMat; |
79 |
|
80 |
double determinant = det(); |
81 |
|
82 |
invMat.element[0][0] = element[1][1]*element[2][2] - element[1][2]*element[2][1]; |
83 |
invMat.element[1][0] = element[1][2]*element[2][0] - element[1][0]*element[2][2]; |
84 |
invMat.element[2][0] = element[1][0]*element[2][1] - element[1][1]*element[2][0]; |
85 |
invMat.element[0][1] = element[2][1]*element[0][2] - element[2][2]*element[0][1]; |
86 |
invMat.element[1][1] = element[2][2]*element[0][0] - element[2][0]*element[0][2]; |
87 |
invMat.element[2][1] = element[2][0]*element[0][1] - element[2][1]*element[0][0]; |
88 |
invMat.element[0][2] = element[0][1]*element[1][2] - element[0][2]*element[1][1]; |
89 |
invMat.element[1][2] = element[0][2]*element[1][0] - element[0][0]*element[1][2]; |
90 |
invMat.element[2][2] = element[0][0]*element[1][1] - element[0][1]*element[1][0]; |
91 |
|
92 |
invMat /= determinant; |
93 |
|
94 |
return(invMat); |
95 |
} |
96 |
|
97 |
Mat3x3d Mat3x3d::transpose(void) const{ |
98 |
Mat3x3d transposeMat; |
99 |
|
100 |
for(unsigned int i=0; i<3; i++) |
101 |
for(unsigned int j=0; j<3; j++) |
102 |
transposeMat.element[i][j] = element[j][i]; |
103 |
|
104 |
return(transposeMat); |
105 |
|
106 |
} |
107 |
|
108 |
double Mat3x3d::det() const{ |
109 |
double x; |
110 |
double y; |
111 |
double z; |
112 |
|
113 |
x = element[0][0] * (element[1][1] * element[2][2] - element[1][2] * element[2][1]); |
114 |
y = element[0][1] * (element[1][2] * element[2][0] - element[1][0] * element[2][2]); |
115 |
z = element[0][2] * (element[1][0] * element[2][1] - element[1][1] * element[2][0]); |
116 |
|
117 |
return(x + y + z); |
118 |
} |
119 |
|
120 |
void Mat3x3d::diagonalize(Vector3d& v, Mat3x3d& m){ |
121 |
diagonalize(v.vec, m.element); |
122 |
} |
123 |
|
124 |
void Mat3x3d::diagonalize(Vector3d& v, double m[3][3]){ |
125 |
diagonalize(v.vec, m); |
126 |
} |
127 |
|
128 |
void Mat3x3d::diagonalize(double v[3], Mat3x3d& m){ |
129 |
diagonalize(v, m.element); |
130 |
} |
131 |
|
132 |
void Mat3x3d::diagonalize(double v[3], double m[3][3]){ |
133 |
|
134 |
} |
135 |
|
136 |
Quaternion Mat3x3d::toQuaternion(){ |
137 |
Quaternion q; |
138 |
double t, s; |
139 |
double ad1, ad2, ad3; |
140 |
|
141 |
t = element[0][0] + element[1][1] + element[2][2] + 1.0; |
142 |
if( t > 0.0 ){ |
143 |
|
144 |
s = 0.5 / sqrt( t ); |
145 |
q.quat[0] = 0.25 / s; |
146 |
q.quat[1] = (element[1][2] - element[2][1]) * s; |
147 |
q.quat[2] = (element[2][0] - element[0][2]) * s; |
148 |
q.quat[3] = (element[0][1] - element[1][0]) * s; |
149 |
} |
150 |
else{ |
151 |
|
152 |
ad1 = fabs( element[0][0] ); |
153 |
ad2 = fabs( element[1][1] ); |
154 |
ad3 = fabs( element[2][2] ); |
155 |
|
156 |
if( ad1 >= ad2 && ad1 >= ad3 ){ |
157 |
s = 2.0 * sqrt( 1.0 + element[0][0] - element[1][1] - element[2][2] ); |
158 |
q.quat[0] = (element[1][2] + element[2][1]) / s; |
159 |
q.quat[1] = 0.5 / s; |
160 |
q.quat[2] = (element[0][1] + element[1][0]) / s; |
161 |
q.quat[3] = (element[0][2] + element[2][0]) / s; |
162 |
} |
163 |
else if( ad2 >= ad1 && ad2 >= ad3 ){ |
164 |
s = sqrt( 1.0 + element[1][1] - element[0][0] - element[2][2] ) * 2.0; |
165 |
q.quat[0] = (element[0][2] + element[2][0]) / s; |
166 |
q.quat[1] = (element[0][1] + element[1][0]) / s; |
167 |
q.quat[2] = 0.5 / s; |
168 |
q.quat[3] = (element[1][2] + element[2][1]) / s; |
169 |
} |
170 |
else{ |
171 |
s = sqrt( 1.0 + element[2][2] - element[0][0] - element[1][1] ) * 2.0; |
172 |
q.quat[0] = (element[0][1] + element[1][0]) / s; |
173 |
q.quat[1] = (element[0][2] + element[2][0]) / s; |
174 |
q.quat[2] = (element[1][2] + element[2][1]) / s; |
175 |
q.quat[3] = 0.5 / s; |
176 |
} |
177 |
} |
178 |
return q; |
179 |
} |
180 |
|
181 |
Euler3 Mat3x3d::toEuler(){ |
182 |
// We use so-called "x-convention", which is the most common definition. |
183 |
// In this convention, the rotation given by Euler angles (phi, theta, psi), where the first |
184 |
// rotation is by an angle phi about the z-axis, the second is by an angle |
185 |
// theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the |
186 |
//z-axis (again). |
187 |
|
188 |
Euler3 e; |
189 |
double cosTheta; |
190 |
double sinTheta; |
191 |
const double eps = 1.0e-8; |
192 |
// set the tolerance for Euler angles and rotation elements |
193 |
|
194 |
e.theta = acos(min(1.0,max(-1.0, element[2][2]))); |
195 |
cosTheta = element[2][2]; |
196 |
sinTheta = sqrt(1.0 - cosTheta * cosTheta); |
197 |
|
198 |
// when sin(theta) is close to 0, we need to consider singularity |
199 |
// In this case, we can assign an arbitary value to phi (or psi), and then determine |
200 |
// the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 |
201 |
// in cases of singularity. |
202 |
// we use atan2 instead of atan, since atan2 will give us -Pi to Pi. |
203 |
// Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never |
204 |
// change the sign of both of the parameters passed to atan2. |
205 |
|
206 |
if (fabs(sinTheta) <= eps){ |
207 |
e.psi = 0.0; |
208 |
//e.phi = atan2(-Amat[Ayx], Amat[Axx]); |
209 |
e.phi = atan2(-element[1][0], element[0][0]); |
210 |
} |
211 |
// we only have one unique solution |
212 |
else{ |
213 |
//e.phi = atan2(Amat[Azx], -Amat[Azy]); |
214 |
//e.psi = atan2(Amat[Axz], Amat[Ayz]); |
215 |
e.phi = atan2(element[2][0], -element[2][1]); |
216 |
e.psi = atan2(element[0][2], -element[1][2]); |
217 |
} |
218 |
|
219 |
//wrap phi and psi, make sure they are in the range from 0 to 2*Pi |
220 |
//if (phi < 0) |
221 |
// phi += M_PI; |
222 |
|
223 |
//if (psi < 0) |
224 |
// psi += M_PI |
225 |
|
226 |
return e; |
227 |
} |
228 |
|
229 |
|
230 |
Vector3d operator*(const Mat3x3d& m, const Vector3d& v){ |
231 |
Vector3d result; |
232 |
|
233 |
result.x = m.element[0][0] * v.x + m.element[0][1] * v.y + m.element[0][2]*v.z; |
234 |
result.y = m.element[1][0] * v.x + m.element[1][1] * v.y + m.element[1][2]*v.z; |
235 |
result.z = m.element[2][0] * v.x + m.element[2][1] * v.y + m.element[2][2]*v.z; |
236 |
|
237 |
return result; |
238 |
} |