| 1 | 
tim | 
1254 | 
#include <cmath> | 
| 2 | 
  | 
  | 
#include "Mat3x3d.hpp" | 
| 3 | 
  | 
  | 
#include "Vector3d.hpp" | 
| 4 | 
  | 
  | 
#include "Quaternion.hpp" | 
| 5 | 
  | 
  | 
#include "Euler3.hpp" | 
| 6 | 
  | 
  | 
 | 
| 7 | 
  | 
  | 
Mat3x3d::Mat3x3d(const Vector3d& v1, const Vector3d& v2, const Vector3d& v3){ | 
| 8 | 
  | 
  | 
  element[0][0] = v1.x; | 
| 9 | 
  | 
  | 
  element[0][1] = v1.y; | 
| 10 | 
  | 
  | 
  element[0][2] = v1.z; | 
| 11 | 
  | 
  | 
   | 
| 12 | 
  | 
  | 
  element[1][0] = v2.x; | 
| 13 | 
  | 
  | 
  element[1][1] = v2.y; | 
| 14 | 
  | 
  | 
  element[1][2] = v2.z; | 
| 15 | 
  | 
  | 
 | 
| 16 | 
  | 
  | 
  element[2][0] = v3.x; | 
| 17 | 
  | 
  | 
  element[2][1] = v3.y; | 
| 18 | 
  | 
  | 
  element[2][2] = v3.z; | 
| 19 | 
  | 
  | 
} | 
| 20 | 
  | 
  | 
Mat3x3d::Mat3x3d(const Quaternion& q){ | 
| 21 | 
  | 
  | 
 | 
| 22 | 
  | 
  | 
  double q0Sqr; | 
| 23 | 
  | 
  | 
  double q1Sqr; | 
| 24 | 
  | 
  | 
  double q2Sqr; | 
| 25 | 
  | 
  | 
  double q3Sqr; | 
| 26 | 
  | 
  | 
 | 
| 27 | 
tim | 
1452 | 
  q0Sqr = q.x * q.x; | 
| 28 | 
  | 
  | 
  q1Sqr = q.y * q.y; | 
| 29 | 
  | 
  | 
  q2Sqr = q.z * q.z; | 
| 30 | 
  | 
  | 
  q3Sqr = q.w * q.w; | 
| 31 | 
tim | 
1254 | 
   | 
| 32 | 
  | 
  | 
   | 
| 33 | 
  | 
  | 
  element[0][0]= q0Sqr + q1Sqr - q2Sqr - q3Sqr; | 
| 34 | 
tim | 
1452 | 
  element[0][1] = 2.0 * ( q.y * q.z + q.x * q.w ); | 
| 35 | 
  | 
  | 
  element[0][2] = 2.0 * ( q.y * q.w - q.x * q.z ); | 
| 36 | 
tim | 
1254 | 
   | 
| 37 | 
tim | 
1452 | 
  element[1][0] = 2.0 * ( q.y * q.z - q.x * q.w ); | 
| 38 | 
tim | 
1254 | 
  element[1][1] = q0Sqr - q1Sqr + q2Sqr - q3Sqr; | 
| 39 | 
tim | 
1452 | 
  element[1][2] = 2.0 * ( q.z * q.w + q.x * q.y ); | 
| 40 | 
tim | 
1254 | 
   | 
| 41 | 
tim | 
1452 | 
  element[2][0] = 2.0 * ( q.y * q.w + q.x * q.z ); | 
| 42 | 
  | 
  | 
  element[2][1] = 2.0 * ( q.z * q.w - q.x * q.y ); | 
| 43 | 
tim | 
1254 | 
  element[2][2] = q0Sqr - q1Sqr -q2Sqr +q3Sqr; | 
| 44 | 
  | 
  | 
   | 
| 45 | 
  | 
  | 
} | 
| 46 | 
  | 
  | 
 | 
| 47 | 
  | 
  | 
Mat3x3d::Mat3x3d(const Euler3& e){ | 
| 48 | 
  | 
  | 
  double sinTheta; | 
| 49 | 
  | 
  | 
  double sinPhi; | 
| 50 | 
  | 
  | 
  double sinPsi; | 
| 51 | 
  | 
  | 
  double cosTheta; | 
| 52 | 
  | 
  | 
  double cosPhi; | 
| 53 | 
  | 
  | 
  double cosPsi; | 
| 54 | 
  | 
  | 
 | 
| 55 | 
  | 
  | 
  sinTheta = sin(e.theta); | 
| 56 | 
  | 
  | 
  sinPhi = sin(e.phi); | 
| 57 | 
  | 
  | 
  sinPsi = sin(e.psi); | 
| 58 | 
  | 
  | 
 | 
| 59 | 
  | 
  | 
  cosTheta = cos(e.theta); | 
| 60 | 
  | 
  | 
  cosPhi = cos(e.phi); | 
| 61 | 
  | 
  | 
  cosPsi = cos(e.psi); | 
| 62 | 
  | 
  | 
   | 
| 63 | 
  | 
  | 
  element[0][0] = (cosPhi * cosPsi) - (sinPhi * cosTheta * sinPsi); | 
| 64 | 
  | 
  | 
  element[0][1] = (sinPhi * cosPsi) + (cosPhi * cosTheta * sinPsi); | 
| 65 | 
  | 
  | 
  element[0][2] = sinTheta * sinPsi; | 
| 66 | 
  | 
  | 
     | 
| 67 | 
  | 
  | 
  element[1][0] = -(cosPhi * sinPsi) - (sinPhi * cosTheta * cosPsi); | 
| 68 | 
  | 
  | 
  element[1][1] = -(sinPhi * sinPsi) + (cosPhi * cosTheta * cosPsi); | 
| 69 | 
  | 
  | 
  element[1][2] = sinTheta * cosPsi; | 
| 70 | 
  | 
  | 
   | 
| 71 | 
  | 
  | 
  element[2][0] = sinPhi * sinTheta; | 
| 72 | 
  | 
  | 
  element[2][1] = -cosPhi * sinTheta; | 
| 73 | 
  | 
  | 
  element[2][2] = cosTheta; | 
| 74 | 
  | 
  | 
} | 
| 75 | 
  | 
  | 
 | 
| 76 | 
  | 
  | 
Mat3x3d Mat3x3d::inverse() const{ | 
| 77 | 
  | 
  | 
 | 
| 78 | 
  | 
  | 
  Mat3x3d invMat; | 
| 79 | 
  | 
  | 
   | 
| 80 | 
  | 
  | 
  double determinant = det(); | 
| 81 | 
  | 
  | 
 | 
| 82 | 
  | 
  | 
  invMat.element[0][0] = element[1][1]*element[2][2] - element[1][2]*element[2][1]; | 
| 83 | 
  | 
  | 
  invMat.element[1][0] = element[1][2]*element[2][0] - element[1][0]*element[2][2]; | 
| 84 | 
  | 
  | 
  invMat.element[2][0] = element[1][0]*element[2][1] - element[1][1]*element[2][0]; | 
| 85 | 
  | 
  | 
  invMat.element[0][1] = element[2][1]*element[0][2] - element[2][2]*element[0][1]; | 
| 86 | 
  | 
  | 
  invMat.element[1][1] = element[2][2]*element[0][0] - element[2][0]*element[0][2]; | 
| 87 | 
  | 
  | 
  invMat.element[2][1] = element[2][0]*element[0][1] - element[2][1]*element[0][0]; | 
| 88 | 
  | 
  | 
  invMat.element[0][2] = element[0][1]*element[1][2] - element[0][2]*element[1][1]; | 
| 89 | 
  | 
  | 
  invMat.element[1][2] = element[0][2]*element[1][0] - element[0][0]*element[1][2]; | 
| 90 | 
  | 
  | 
  invMat.element[2][2] = element[0][0]*element[1][1] - element[0][1]*element[1][0]; | 
| 91 | 
  | 
  | 
   | 
| 92 | 
  | 
  | 
  invMat /= determinant; | 
| 93 | 
  | 
  | 
   | 
| 94 | 
  | 
  | 
  return(invMat); | 
| 95 | 
  | 
  | 
} | 
| 96 | 
  | 
  | 
 | 
| 97 | 
  | 
  | 
Mat3x3d Mat3x3d::transpose(void) const{ | 
| 98 | 
  | 
  | 
  Mat3x3d transposeMat; | 
| 99 | 
  | 
  | 
 | 
| 100 | 
  | 
  | 
  for(unsigned int i=0; i<3; i++) | 
| 101 | 
  | 
  | 
    for(unsigned int j=0; j<3; j++) | 
| 102 | 
  | 
  | 
      transposeMat.element[i][j] = element[j][i]; | 
| 103 | 
  | 
  | 
   | 
| 104 | 
  | 
  | 
  return(transposeMat); | 
| 105 | 
  | 
  | 
 | 
| 106 | 
  | 
  | 
} | 
| 107 | 
  | 
  | 
 | 
| 108 | 
  | 
  | 
double Mat3x3d::det() const{ | 
| 109 | 
  | 
  | 
  double x; | 
| 110 | 
  | 
  | 
  double y; | 
| 111 | 
  | 
  | 
  double z; | 
| 112 | 
  | 
  | 
 | 
| 113 | 
  | 
  | 
  x = element[0][0] * (element[1][1] * element[2][2] - element[1][2] * element[2][1]); | 
| 114 | 
  | 
  | 
  y = element[0][1] * (element[1][2] * element[2][0] - element[1][0] * element[2][2]); | 
| 115 | 
  | 
  | 
  z = element[0][2] * (element[1][0] * element[2][1] - element[1][1] * element[2][0]); | 
| 116 | 
  | 
  | 
 | 
| 117 | 
  | 
  | 
  return(x + y + z); | 
| 118 | 
  | 
  | 
} | 
| 119 | 
  | 
  | 
 | 
| 120 | 
  | 
  | 
void Mat3x3d::diagonalize(Vector3d& v, Mat3x3d& m){ | 
| 121 | 
  | 
  | 
  diagonalize(v.vec, m.element); | 
| 122 | 
  | 
  | 
} | 
| 123 | 
  | 
  | 
 | 
| 124 | 
  | 
  | 
void Mat3x3d::diagonalize(Vector3d& v, double m[3][3]){ | 
| 125 | 
  | 
  | 
  diagonalize(v.vec, m); | 
| 126 | 
  | 
  | 
} | 
| 127 | 
  | 
  | 
 | 
| 128 | 
  | 
  | 
void Mat3x3d::diagonalize(double v[3], Mat3x3d& m){ | 
| 129 | 
  | 
  | 
  diagonalize(v, m.element); | 
| 130 | 
  | 
  | 
} | 
| 131 | 
  | 
  | 
 | 
| 132 | 
  | 
  | 
void Mat3x3d::diagonalize(double v[3], double m[3][3]){ | 
| 133 | 
  | 
  | 
   | 
| 134 | 
  | 
  | 
} | 
| 135 | 
  | 
  | 
 | 
| 136 | 
  | 
  | 
Quaternion Mat3x3d::toQuaternion(){ | 
| 137 | 
  | 
  | 
  Quaternion q; | 
| 138 | 
  | 
  | 
  double t, s; | 
| 139 | 
  | 
  | 
  double ad1, ad2, ad3; | 
| 140 | 
  | 
  | 
     | 
| 141 | 
  | 
  | 
  t = element[0][0] + element[1][1] + element[2][2] + 1.0; | 
| 142 | 
  | 
  | 
  if( t > 0.0 ){ | 
| 143 | 
  | 
  | 
     | 
| 144 | 
  | 
  | 
    s = 0.5 / sqrt( t ); | 
| 145 | 
tim | 
1452 | 
    q.x = 0.25 / s; | 
| 146 | 
  | 
  | 
    q.y = (element[1][2] - element[2][1]) * s; | 
| 147 | 
  | 
  | 
    q.z = (element[2][0] - element[0][2]) * s; | 
| 148 | 
  | 
  | 
    q.w = (element[0][1] - element[1][0]) * s; | 
| 149 | 
tim | 
1254 | 
  } | 
| 150 | 
  | 
  | 
  else{ | 
| 151 | 
  | 
  | 
     | 
| 152 | 
  | 
  | 
    ad1 = fabs( element[0][0] ); | 
| 153 | 
  | 
  | 
    ad2 = fabs( element[1][1] ); | 
| 154 | 
  | 
  | 
    ad3 = fabs( element[2][2] ); | 
| 155 | 
  | 
  | 
     | 
| 156 | 
  | 
  | 
    if( ad1 >= ad2 && ad1 >= ad3 ){      | 
| 157 | 
  | 
  | 
        s = 2.0 * sqrt( 1.0 + element[0][0] - element[1][1] - element[2][2] ); | 
| 158 | 
tim | 
1452 | 
        q.x = (element[1][2] + element[2][1]) / s; | 
| 159 | 
  | 
  | 
        q.y = 0.5 / s; | 
| 160 | 
  | 
  | 
        q.z = (element[0][1] + element[1][0]) / s; | 
| 161 | 
  | 
  | 
        q.w = (element[0][2] + element[2][0]) / s; | 
| 162 | 
tim | 
1254 | 
    } | 
| 163 | 
  | 
  | 
    else if( ad2 >= ad1 && ad2 >= ad3 ){                 | 
| 164 | 
  | 
  | 
      s = sqrt( 1.0 + element[1][1] - element[0][0] - element[2][2] ) * 2.0; | 
| 165 | 
tim | 
1452 | 
      q.x = (element[0][2] + element[2][0]) / s; | 
| 166 | 
  | 
  | 
      q.y = (element[0][1] + element[1][0]) / s; | 
| 167 | 
  | 
  | 
      q.z = 0.5 / s; | 
| 168 | 
  | 
  | 
      q.w = (element[1][2] + element[2][1]) / s; | 
| 169 | 
tim | 
1254 | 
    } | 
| 170 | 
  | 
  | 
    else{ | 
| 171 | 
  | 
  | 
      s = sqrt( 1.0 + element[2][2] - element[0][0] - element[1][1] ) * 2.0; | 
| 172 | 
tim | 
1452 | 
      q.x = (element[0][1] + element[1][0]) / s; | 
| 173 | 
  | 
  | 
      q.y = (element[0][2] + element[2][0]) / s; | 
| 174 | 
  | 
  | 
      q.z = (element[1][2] + element[2][1]) / s; | 
| 175 | 
  | 
  | 
      q.w = 0.5 / s; | 
| 176 | 
tim | 
1254 | 
    } | 
| 177 | 
  | 
  | 
  }   | 
| 178 | 
  | 
  | 
  return q; | 
| 179 | 
  | 
  | 
} | 
| 180 | 
  | 
  | 
 | 
| 181 | 
  | 
  | 
Euler3 Mat3x3d::toEuler(){ | 
| 182 | 
  | 
  | 
  // We use so-called "x-convention", which is the most common definition.  | 
| 183 | 
  | 
  | 
  // In this convention, the rotation given by Euler angles (phi, theta, psi), where the first  | 
| 184 | 
  | 
  | 
  // rotation is by an angle phi about the z-axis, the second is by an angle   | 
| 185 | 
  | 
  | 
  // theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the | 
| 186 | 
  | 
  | 
  //z-axis (again).  | 
| 187 | 
  | 
  | 
 | 
| 188 | 
  | 
  | 
  Euler3 e; | 
| 189 | 
  | 
  | 
  double cosTheta; | 
| 190 | 
  | 
  | 
  double sinTheta; | 
| 191 | 
  | 
  | 
  const double eps = 1.0e-8; | 
| 192 | 
  | 
  | 
  // set the tolerance for Euler angles and rotation elements | 
| 193 | 
  | 
  | 
 | 
| 194 | 
  | 
  | 
  e.theta = acos(min(1.0,max(-1.0, element[2][2]))); | 
| 195 | 
  | 
  | 
  cosTheta = element[2][2]; | 
| 196 | 
  | 
  | 
  sinTheta = sqrt(1.0 - cosTheta * cosTheta); | 
| 197 | 
  | 
  | 
 | 
| 198 | 
  | 
  | 
  // when sin(theta) is close to 0, we need to consider singularity | 
| 199 | 
  | 
  | 
  // In this case, we can assign an arbitary value to phi (or psi), and then determine  | 
| 200 | 
  | 
  | 
  // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 | 
| 201 | 
  | 
  | 
  // in cases of singularity.   | 
| 202 | 
  | 
  | 
  // we use atan2 instead of atan, since atan2 will give us -Pi to Pi.  | 
| 203 | 
  | 
  | 
  // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never | 
| 204 | 
  | 
  | 
  // change the sign of both of the parameters passed to atan2. | 
| 205 | 
  | 
  | 
   | 
| 206 | 
  | 
  | 
  if (fabs(sinTheta) <= eps){ | 
| 207 | 
  | 
  | 
    e.psi = 0.0; | 
| 208 | 
  | 
  | 
    //e.phi = atan2(-Amat[Ayx], Amat[Axx]);   | 
| 209 | 
  | 
  | 
    e.phi = atan2(-element[1][0], element[0][0]); | 
| 210 | 
  | 
  | 
  } | 
| 211 | 
  | 
  | 
  // we only have one unique solution | 
| 212 | 
  | 
  | 
  else{     | 
| 213 | 
  | 
  | 
      //e.phi = atan2(Amat[Azx], -Amat[Azy]); | 
| 214 | 
  | 
  | 
      //e.psi = atan2(Amat[Axz], Amat[Ayz]); | 
| 215 | 
  | 
  | 
      e.phi = atan2(element[2][0], -element[2][1]); | 
| 216 | 
  | 
  | 
      e.psi = atan2(element[0][2], -element[1][2]); | 
| 217 | 
  | 
  | 
  } | 
| 218 | 
  | 
  | 
 | 
| 219 | 
  | 
  | 
  //wrap phi and psi, make sure they are in the range from 0 to 2*Pi | 
| 220 | 
  | 
  | 
  //if (phi < 0) | 
| 221 | 
  | 
  | 
  //  phi += M_PI; | 
| 222 | 
  | 
  | 
 | 
| 223 | 
  | 
  | 
  //if (psi < 0) | 
| 224 | 
  | 
  | 
  //  psi += M_PI | 
| 225 | 
  | 
  | 
 | 
| 226 | 
  | 
  | 
  return e; | 
| 227 | 
  | 
  | 
} | 
| 228 | 
tim | 
1268 | 
 | 
| 229 | 
  | 
  | 
 | 
| 230 | 
  | 
  | 
Vector3d operator*(const Mat3x3d& m, const Vector3d& v){ | 
| 231 | 
  | 
  | 
  Vector3d result; | 
| 232 | 
  | 
  | 
   | 
| 233 | 
  | 
  | 
  result.x = m.element[0][0] * v.x + m.element[0][1] * v.y + m.element[0][2]*v.z; | 
| 234 | 
tim | 
1319 | 
  result.y = m.element[1][0] * v.x + m.element[1][1] * v.y + m.element[1][2]*v.z; | 
| 235 | 
  | 
  | 
  result.z = m.element[2][0] * v.x + m.element[2][1] * v.y + m.element[2][2]*v.z; | 
| 236 | 
tim | 
1268 | 
 | 
| 237 | 
  | 
  | 
  return result; | 
| 238 | 
  | 
  | 
}   |