| 1 |
tim |
1254 |
#include <cmath> |
| 2 |
|
|
#include "Mat3x3d.hpp" |
| 3 |
|
|
#include "Vector3d.hpp" |
| 4 |
|
|
#include "Quaternion.hpp" |
| 5 |
|
|
#include "Euler3.hpp" |
| 6 |
|
|
|
| 7 |
|
|
Mat3x3d::Mat3x3d(const Vector3d& v1, const Vector3d& v2, const Vector3d& v3){ |
| 8 |
|
|
element[0][0] = v1.x; |
| 9 |
|
|
element[0][1] = v1.y; |
| 10 |
|
|
element[0][2] = v1.z; |
| 11 |
|
|
|
| 12 |
|
|
element[1][0] = v2.x; |
| 13 |
|
|
element[1][1] = v2.y; |
| 14 |
|
|
element[1][2] = v2.z; |
| 15 |
|
|
|
| 16 |
|
|
element[2][0] = v3.x; |
| 17 |
|
|
element[2][1] = v3.y; |
| 18 |
|
|
element[2][2] = v3.z; |
| 19 |
|
|
} |
| 20 |
|
|
Mat3x3d::Mat3x3d(const Quaternion& q){ |
| 21 |
|
|
|
| 22 |
|
|
double q0Sqr; |
| 23 |
|
|
double q1Sqr; |
| 24 |
|
|
double q2Sqr; |
| 25 |
|
|
double q3Sqr; |
| 26 |
|
|
|
| 27 |
|
|
q0Sqr = q.quat[0] * q.quat[0]; |
| 28 |
|
|
q1Sqr = q.quat[1] * q.quat[1]; |
| 29 |
|
|
q2Sqr = q.quat[2] * q.quat[2]; |
| 30 |
|
|
q3Sqr = q.quat[3] * q.quat[3]; |
| 31 |
|
|
|
| 32 |
|
|
|
| 33 |
|
|
element[0][0]= q0Sqr + q1Sqr - q2Sqr - q3Sqr; |
| 34 |
|
|
element[0][1] = 2.0 * ( q.quat[1] * q.quat[2] + q.quat[0] * q.quat[3] ); |
| 35 |
|
|
element[0][2] = 2.0 * ( q.quat[1] * q.quat[3] - q.quat[0] * q.quat[2] ); |
| 36 |
|
|
|
| 37 |
|
|
element[1][0] = 2.0 * ( q.quat[1] * q.quat[2] - q.quat[0] * q.quat[3] ); |
| 38 |
|
|
element[1][1] = q0Sqr - q1Sqr + q2Sqr - q3Sqr; |
| 39 |
|
|
element[1][2] = 2.0 * ( q.quat[2] * q.quat[3] + q.quat[0] * q.quat[1] ); |
| 40 |
|
|
|
| 41 |
|
|
element[2][0] = 2.0 * ( q.quat[1] * q.quat[3] + q.quat[0] * q.quat[2] ); |
| 42 |
|
|
element[2][1] = 2.0 * ( q.quat[2] * q.quat[3] - q.quat[0] * q.quat[1] ); |
| 43 |
|
|
element[2][2] = q0Sqr - q1Sqr -q2Sqr +q3Sqr; |
| 44 |
|
|
|
| 45 |
|
|
} |
| 46 |
|
|
|
| 47 |
|
|
Mat3x3d::Mat3x3d(const Euler3& e){ |
| 48 |
|
|
double sinTheta; |
| 49 |
|
|
double sinPhi; |
| 50 |
|
|
double sinPsi; |
| 51 |
|
|
double cosTheta; |
| 52 |
|
|
double cosPhi; |
| 53 |
|
|
double cosPsi; |
| 54 |
|
|
|
| 55 |
|
|
sinTheta = sin(e.theta); |
| 56 |
|
|
sinPhi = sin(e.phi); |
| 57 |
|
|
sinPsi = sin(e.psi); |
| 58 |
|
|
|
| 59 |
|
|
cosTheta = cos(e.theta); |
| 60 |
|
|
cosPhi = cos(e.phi); |
| 61 |
|
|
cosPsi = cos(e.psi); |
| 62 |
|
|
|
| 63 |
|
|
element[0][0] = (cosPhi * cosPsi) - (sinPhi * cosTheta * sinPsi); |
| 64 |
|
|
element[0][1] = (sinPhi * cosPsi) + (cosPhi * cosTheta * sinPsi); |
| 65 |
|
|
element[0][2] = sinTheta * sinPsi; |
| 66 |
|
|
|
| 67 |
|
|
element[1][0] = -(cosPhi * sinPsi) - (sinPhi * cosTheta * cosPsi); |
| 68 |
|
|
element[1][1] = -(sinPhi * sinPsi) + (cosPhi * cosTheta * cosPsi); |
| 69 |
|
|
element[1][2] = sinTheta * cosPsi; |
| 70 |
|
|
|
| 71 |
|
|
element[2][0] = sinPhi * sinTheta; |
| 72 |
|
|
element[2][1] = -cosPhi * sinTheta; |
| 73 |
|
|
element[2][2] = cosTheta; |
| 74 |
|
|
} |
| 75 |
|
|
|
| 76 |
|
|
Mat3x3d Mat3x3d::inverse() const{ |
| 77 |
|
|
|
| 78 |
|
|
Mat3x3d invMat; |
| 79 |
|
|
|
| 80 |
|
|
double determinant = det(); |
| 81 |
|
|
|
| 82 |
|
|
invMat.element[0][0] = element[1][1]*element[2][2] - element[1][2]*element[2][1]; |
| 83 |
|
|
invMat.element[1][0] = element[1][2]*element[2][0] - element[1][0]*element[2][2]; |
| 84 |
|
|
invMat.element[2][0] = element[1][0]*element[2][1] - element[1][1]*element[2][0]; |
| 85 |
|
|
invMat.element[0][1] = element[2][1]*element[0][2] - element[2][2]*element[0][1]; |
| 86 |
|
|
invMat.element[1][1] = element[2][2]*element[0][0] - element[2][0]*element[0][2]; |
| 87 |
|
|
invMat.element[2][1] = element[2][0]*element[0][1] - element[2][1]*element[0][0]; |
| 88 |
|
|
invMat.element[0][2] = element[0][1]*element[1][2] - element[0][2]*element[1][1]; |
| 89 |
|
|
invMat.element[1][2] = element[0][2]*element[1][0] - element[0][0]*element[1][2]; |
| 90 |
|
|
invMat.element[2][2] = element[0][0]*element[1][1] - element[0][1]*element[1][0]; |
| 91 |
|
|
|
| 92 |
|
|
invMat /= determinant; |
| 93 |
|
|
|
| 94 |
|
|
return(invMat); |
| 95 |
|
|
} |
| 96 |
|
|
|
| 97 |
|
|
Mat3x3d Mat3x3d::transpose(void) const{ |
| 98 |
|
|
Mat3x3d transposeMat; |
| 99 |
|
|
|
| 100 |
|
|
for(unsigned int i=0; i<3; i++) |
| 101 |
|
|
for(unsigned int j=0; j<3; j++) |
| 102 |
|
|
transposeMat.element[i][j] = element[j][i]; |
| 103 |
|
|
|
| 104 |
|
|
return(transposeMat); |
| 105 |
|
|
|
| 106 |
|
|
} |
| 107 |
|
|
|
| 108 |
|
|
double Mat3x3d::det() const{ |
| 109 |
|
|
double x; |
| 110 |
|
|
double y; |
| 111 |
|
|
double z; |
| 112 |
|
|
|
| 113 |
|
|
x = element[0][0] * (element[1][1] * element[2][2] - element[1][2] * element[2][1]); |
| 114 |
|
|
y = element[0][1] * (element[1][2] * element[2][0] - element[1][0] * element[2][2]); |
| 115 |
|
|
z = element[0][2] * (element[1][0] * element[2][1] - element[1][1] * element[2][0]); |
| 116 |
|
|
|
| 117 |
|
|
return(x + y + z); |
| 118 |
|
|
} |
| 119 |
|
|
|
| 120 |
|
|
void Mat3x3d::diagonalize(Vector3d& v, Mat3x3d& m){ |
| 121 |
|
|
diagonalize(v.vec, m.element); |
| 122 |
|
|
} |
| 123 |
|
|
|
| 124 |
|
|
void Mat3x3d::diagonalize(Vector3d& v, double m[3][3]){ |
| 125 |
|
|
diagonalize(v.vec, m); |
| 126 |
|
|
} |
| 127 |
|
|
|
| 128 |
|
|
void Mat3x3d::diagonalize(double v[3], Mat3x3d& m){ |
| 129 |
|
|
diagonalize(v, m.element); |
| 130 |
|
|
} |
| 131 |
|
|
|
| 132 |
|
|
void Mat3x3d::diagonalize(double v[3], double m[3][3]){ |
| 133 |
|
|
|
| 134 |
|
|
} |
| 135 |
|
|
|
| 136 |
|
|
Quaternion Mat3x3d::toQuaternion(){ |
| 137 |
|
|
Quaternion q; |
| 138 |
|
|
double t, s; |
| 139 |
|
|
double ad1, ad2, ad3; |
| 140 |
|
|
|
| 141 |
|
|
t = element[0][0] + element[1][1] + element[2][2] + 1.0; |
| 142 |
|
|
if( t > 0.0 ){ |
| 143 |
|
|
|
| 144 |
|
|
s = 0.5 / sqrt( t ); |
| 145 |
|
|
q.quat[0] = 0.25 / s; |
| 146 |
|
|
q.quat[1] = (element[1][2] - element[2][1]) * s; |
| 147 |
|
|
q.quat[2] = (element[2][0] - element[0][2]) * s; |
| 148 |
|
|
q.quat[3] = (element[0][1] - element[1][0]) * s; |
| 149 |
|
|
} |
| 150 |
|
|
else{ |
| 151 |
|
|
|
| 152 |
|
|
ad1 = fabs( element[0][0] ); |
| 153 |
|
|
ad2 = fabs( element[1][1] ); |
| 154 |
|
|
ad3 = fabs( element[2][2] ); |
| 155 |
|
|
|
| 156 |
|
|
if( ad1 >= ad2 && ad1 >= ad3 ){ |
| 157 |
|
|
s = 2.0 * sqrt( 1.0 + element[0][0] - element[1][1] - element[2][2] ); |
| 158 |
|
|
q.quat[0] = (element[1][2] + element[2][1]) / s; |
| 159 |
|
|
q.quat[1] = 0.5 / s; |
| 160 |
|
|
q.quat[2] = (element[0][1] + element[1][0]) / s; |
| 161 |
|
|
q.quat[3] = (element[0][2] + element[2][0]) / s; |
| 162 |
|
|
} |
| 163 |
|
|
else if( ad2 >= ad1 && ad2 >= ad3 ){ |
| 164 |
|
|
s = sqrt( 1.0 + element[1][1] - element[0][0] - element[2][2] ) * 2.0; |
| 165 |
|
|
q.quat[0] = (element[0][2] + element[2][0]) / s; |
| 166 |
|
|
q.quat[1] = (element[0][1] + element[1][0]) / s; |
| 167 |
|
|
q.quat[2] = 0.5 / s; |
| 168 |
|
|
q.quat[3] = (element[1][2] + element[2][1]) / s; |
| 169 |
|
|
} |
| 170 |
|
|
else{ |
| 171 |
|
|
s = sqrt( 1.0 + element[2][2] - element[0][0] - element[1][1] ) * 2.0; |
| 172 |
|
|
q.quat[0] = (element[0][1] + element[1][0]) / s; |
| 173 |
|
|
q.quat[1] = (element[0][2] + element[2][0]) / s; |
| 174 |
|
|
q.quat[2] = (element[1][2] + element[2][1]) / s; |
| 175 |
|
|
q.quat[3] = 0.5 / s; |
| 176 |
|
|
} |
| 177 |
|
|
} |
| 178 |
|
|
return q; |
| 179 |
|
|
} |
| 180 |
|
|
|
| 181 |
|
|
Euler3 Mat3x3d::toEuler(){ |
| 182 |
|
|
// We use so-called "x-convention", which is the most common definition. |
| 183 |
|
|
// In this convention, the rotation given by Euler angles (phi, theta, psi), where the first |
| 184 |
|
|
// rotation is by an angle phi about the z-axis, the second is by an angle |
| 185 |
|
|
// theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the |
| 186 |
|
|
//z-axis (again). |
| 187 |
|
|
|
| 188 |
|
|
Euler3 e; |
| 189 |
|
|
double cosTheta; |
| 190 |
|
|
double sinTheta; |
| 191 |
|
|
const double eps = 1.0e-8; |
| 192 |
|
|
// set the tolerance for Euler angles and rotation elements |
| 193 |
|
|
|
| 194 |
|
|
e.theta = acos(min(1.0,max(-1.0, element[2][2]))); |
| 195 |
|
|
cosTheta = element[2][2]; |
| 196 |
|
|
sinTheta = sqrt(1.0 - cosTheta * cosTheta); |
| 197 |
|
|
|
| 198 |
|
|
// when sin(theta) is close to 0, we need to consider singularity |
| 199 |
|
|
// In this case, we can assign an arbitary value to phi (or psi), and then determine |
| 200 |
|
|
// the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 |
| 201 |
|
|
// in cases of singularity. |
| 202 |
|
|
// we use atan2 instead of atan, since atan2 will give us -Pi to Pi. |
| 203 |
|
|
// Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never |
| 204 |
|
|
// change the sign of both of the parameters passed to atan2. |
| 205 |
|
|
|
| 206 |
|
|
if (fabs(sinTheta) <= eps){ |
| 207 |
|
|
e.psi = 0.0; |
| 208 |
|
|
//e.phi = atan2(-Amat[Ayx], Amat[Axx]); |
| 209 |
|
|
e.phi = atan2(-element[1][0], element[0][0]); |
| 210 |
|
|
} |
| 211 |
|
|
// we only have one unique solution |
| 212 |
|
|
else{ |
| 213 |
|
|
//e.phi = atan2(Amat[Azx], -Amat[Azy]); |
| 214 |
|
|
//e.psi = atan2(Amat[Axz], Amat[Ayz]); |
| 215 |
|
|
e.phi = atan2(element[2][0], -element[2][1]); |
| 216 |
|
|
e.psi = atan2(element[0][2], -element[1][2]); |
| 217 |
|
|
} |
| 218 |
|
|
|
| 219 |
|
|
//wrap phi and psi, make sure they are in the range from 0 to 2*Pi |
| 220 |
|
|
//if (phi < 0) |
| 221 |
|
|
// phi += M_PI; |
| 222 |
|
|
|
| 223 |
|
|
//if (psi < 0) |
| 224 |
|
|
// psi += M_PI |
| 225 |
|
|
|
| 226 |
|
|
return e; |
| 227 |
|
|
} |
| 228 |
tim |
1268 |
|
| 229 |
|
|
|
| 230 |
|
|
Vector3d operator*(const Mat3x3d& m, const Vector3d& v){ |
| 231 |
|
|
Vector3d result; |
| 232 |
|
|
|
| 233 |
|
|
result.x = m.element[0][0] * v.x + m.element[0][1] * v.y + m.element[0][2]*v.z; |
| 234 |
tim |
1319 |
result.y = m.element[1][0] * v.x + m.element[1][1] * v.y + m.element[1][2]*v.z; |
| 235 |
|
|
result.z = m.element[2][0] * v.x + m.element[2][1] * v.y + m.element[2][2]*v.z; |
| 236 |
tim |
1268 |
|
| 237 |
|
|
return result; |
| 238 |
|
|
} |