| 1 |
#include "LinearCons.hpp"
|
| 2 |
|
| 3 |
LinearCons::LinearCons(vector<int>& theIndex, vector<double>& theCoeff, double b, BoundType bType)
|
| 4 |
:ConstraintBase(){
|
| 5 |
|
| 6 |
bound = b;
|
| 7 |
boundType = bType;
|
| 8 |
if(bType == btEqu){
|
| 9 |
consType = linearEqu;
|
| 10 |
}
|
| 11 |
else{
|
| 12 |
consType = linearInequ;
|
| 13 |
}
|
| 14 |
|
| 15 |
index = theIndex;
|
| 16 |
coeff = theCoeff;
|
| 17 |
}
|
| 18 |
|
| 19 |
LinearCons::LinearCons(int dim, vector<int>& theIndex, vector<double>& theCoeff, double b, BoundType bType)
|
| 20 |
:ConstraintBase(dim) {
|
| 21 |
|
| 22 |
if (dim != theCoeff.size()){
|
| 23 |
cout << "LinearCons Error: the dimension of index and coeff does not match" << endl;
|
| 24 |
exit(ERROR_CONSTRAINT);
|
| 25 |
}
|
| 26 |
|
| 27 |
bound = b;
|
| 28 |
boundType = bType;
|
| 29 |
if(bType == btEqu){
|
| 30 |
consType = linearEqu;
|
| 31 |
}
|
| 32 |
else{
|
| 33 |
consType = linearInequ;
|
| 34 |
}
|
| 35 |
|
| 36 |
index = theIndex;
|
| 37 |
coeff = theCoeff;
|
| 38 |
}
|
| 39 |
|
| 40 |
double LinearCons::calcResidual(vector<double>& x){
|
| 41 |
double residue;
|
| 42 |
double valueOfLinearCons;
|
| 43 |
|
| 44 |
valueOfLinearCons = 0;
|
| 45 |
|
| 46 |
for (int i = 0; i < coeff.size(); i++)
|
| 47 |
valueOfLinearCons += coeff[i] * x[index[i]];
|
| 48 |
|
| 49 |
residue = valueOfLinearCons - bound;
|
| 50 |
|
| 51 |
if(boundType == btLower)
|
| 52 |
residue = -residue;
|
| 53 |
|
| 54 |
return residue;
|
| 55 |
}
|
| 56 |
|
| 57 |
vector<double> LinearCons::calcConsGrad(vector<double>& x){
|
| 58 |
vector<double> consGrad(ndim, 0);
|
| 59 |
double sign;
|
| 60 |
|
| 61 |
if(boundType == btLower)
|
| 62 |
sign = -1.0;
|
| 63 |
else
|
| 64 |
sign = 1.0;
|
| 65 |
|
| 66 |
for(int i = 0; i < coeff.size(); i++)
|
| 67 |
consGrad[index[i]] = coeff[i] * sign;
|
| 68 |
|
| 69 |
return consGrad;
|
| 70 |
}
|
| 71 |
|
| 72 |
SymMatrix LinearCons::calcConsHessian(vector<double>& x){
|
| 73 |
SymMatrix H(ndim);
|
| 74 |
H = 0;
|
| 75 |
return H;
|
| 76 |
}
|
| 77 |
|