| 1 |
|
#include <iostream> |
| 2 |
|
#include <stdlib.h> |
| 3 |
|
#include <math.h> |
| 4 |
< |
|
| 4 |
> |
#include "Rattle.hpp" |
| 5 |
> |
#include "Roll.hpp" |
| 6 |
|
#ifdef IS_MPI |
| 7 |
|
#include "mpiSimulation.hpp" |
| 8 |
|
#include <unistd.h> |
| 32 |
|
} |
| 33 |
|
|
| 34 |
|
nAtoms = info->n_atoms; |
| 35 |
+ |
integrableObjects = info->integrableObjects; |
| 36 |
|
|
| 37 |
+ |
consFramework = new RollFramework(info); |
| 38 |
+ |
|
| 39 |
+ |
if(consFramework == NULL){ |
| 40 |
+ |
sprintf(painCave.errMsg, |
| 41 |
+ |
"Integrator::Intergrator() Error: Memory allocation error for RattleFramework" ); |
| 42 |
+ |
painCave.isFatal = 1; |
| 43 |
+ |
simError(); |
| 44 |
+ |
} |
| 45 |
+ |
|
| 46 |
+ |
/* |
| 47 |
|
// check for constraints |
| 48 |
|
|
| 49 |
|
constrainedA = NULL; |
| 56 |
|
nConstrained = 0; |
| 57 |
|
|
| 58 |
|
checkConstraints(); |
| 59 |
+ |
*/ |
| 60 |
|
} |
| 61 |
|
|
| 62 |
|
template<typename T> Integrator<T>::~Integrator(){ |
| 63 |
+ |
if (consFramework != NULL) |
| 64 |
+ |
delete consFramework; |
| 65 |
+ |
/* |
| 66 |
|
if (nConstrained){ |
| 67 |
|
delete[] constrainedA; |
| 68 |
|
delete[] constrainedB; |
| 71 |
|
delete[] moved; |
| 72 |
|
delete[] oldPos; |
| 73 |
|
} |
| 74 |
+ |
*/ |
| 75 |
|
} |
| 76 |
|
|
| 77 |
+ |
/* |
| 78 |
|
template<typename T> void Integrator<T>::checkConstraints(void){ |
| 79 |
|
isConstrained = 0; |
| 80 |
|
|
| 86 |
|
|
| 87 |
|
SRI** theArray; |
| 88 |
|
for (int i = 0; i < nMols; i++){ |
| 89 |
< |
theArray = (SRI * *) molecules[i].getMyBonds(); |
| 89 |
> |
|
| 90 |
> |
theArray = (SRI * *) molecules[i].getMyBonds(); |
| 91 |
|
for (int j = 0; j < molecules[i].getNBonds(); j++){ |
| 92 |
|
constrained = theArray[j]->is_constrained(); |
| 93 |
|
|
| 109 |
|
if (constrained){ |
| 110 |
|
dummy_plug = theArray[j]->get_constraint(); |
| 111 |
|
temp_con[nConstrained].set_a(dummy_plug->get_a()); |
| 112 |
< |
temp_con[nConstrained].set_b(dummy_plug->get_b()); |
| 112 |
> |
temp_con[nConstrained].set_b(Dummy_plug->get_b()); |
| 113 |
|
temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
| 114 |
|
|
| 115 |
|
nConstrained++; |
| 133 |
|
} |
| 134 |
|
} |
| 135 |
|
|
| 136 |
+ |
|
| 137 |
|
if (nConstrained > 0){ |
| 138 |
|
isConstrained = 1; |
| 139 |
|
|
| 167 |
|
|
| 168 |
|
delete[] temp_con; |
| 169 |
|
} |
| 170 |
+ |
*/ |
| 171 |
|
|
| 151 |
– |
|
| 172 |
|
template<typename T> void Integrator<T>::integrate(void){ |
| 173 |
|
|
| 174 |
|
double runTime = info->run_time; |
| 177 |
|
double thermalTime = info->thermalTime; |
| 178 |
|
double resetTime = info->resetTime; |
| 179 |
|
|
| 180 |
< |
|
| 180 |
> |
double difference; |
| 181 |
|
double currSample; |
| 182 |
|
double currThermal; |
| 183 |
|
double currStatus; |
| 195 |
|
dt2 = 0.5 * dt; |
| 196 |
|
|
| 197 |
|
readyCheck(); |
| 198 |
+ |
|
| 199 |
+ |
// remove center of mass drift velocity (in case we passed in a configuration |
| 200 |
+ |
// that was drifting |
| 201 |
+ |
tStats->removeCOMdrift(); |
| 202 |
+ |
//tStats->removeAngularMomentum(); |
| 203 |
+ |
|
| 204 |
+ |
// initialize the retraints if necessary |
| 205 |
+ |
if (info->useSolidThermInt && !info->useLiquidThermInt) { |
| 206 |
+ |
myFF->initRestraints(); |
| 207 |
+ |
} |
| 208 |
|
|
| 209 |
|
// initialize the forces before the first step |
| 210 |
|
|
| 211 |
|
calcForce(1, 1); |
| 212 |
|
|
| 213 |
< |
//temp test |
| 214 |
< |
tStats->getPotential(); |
| 213 |
> |
//execute constraint algorithm to make sure at the very beginning the system is constrained |
| 214 |
> |
//consFramework->doPreConstraint(); |
| 215 |
> |
//consFramework->doConstrainA(); |
| 216 |
> |
//calcForce(1, 1); |
| 217 |
> |
//consFramework->doConstrainB(); |
| 218 |
|
|
| 186 |
– |
if (nConstrained){ |
| 187 |
– |
preMove(); |
| 188 |
– |
constrainA(); |
| 189 |
– |
calcForce(1, 1); |
| 190 |
– |
constrainB(); |
| 191 |
– |
} |
| 192 |
– |
|
| 219 |
|
if (info->setTemp){ |
| 220 |
|
thermalize(); |
| 221 |
|
} |
| 236 |
|
MPIcheckPoint(); |
| 237 |
|
#endif // is_mpi |
| 238 |
|
|
| 239 |
< |
while (info->getTime() < runTime){ |
| 240 |
< |
if ((info->getTime() + dt) >= currStatus){ |
| 239 |
> |
while (info->getTime() < runTime && !stopIntegrator()){ |
| 240 |
> |
difference = info->getTime() + dt - currStatus; |
| 241 |
> |
if (difference > 0 || fabs(difference) < 1e-4 ){ |
| 242 |
|
calcPot = 1; |
| 243 |
|
calcStress = 1; |
| 244 |
|
} |
| 293 |
|
#endif // is_mpi |
| 294 |
|
} |
| 295 |
|
|
| 296 |
+ |
// dump out a file containing the omega values for the final configuration |
| 297 |
+ |
if (info->useSolidThermInt && !info->useLiquidThermInt) |
| 298 |
+ |
myFF->dumpzAngle(); |
| 299 |
+ |
|
| 300 |
+ |
|
| 301 |
|
delete dumpOut; |
| 302 |
|
delete statOut; |
| 303 |
|
} |
| 310 |
|
startProfile(pro3); |
| 311 |
|
#endif //profile |
| 312 |
|
|
| 313 |
< |
preMove(); |
| 313 |
> |
//save old state (position, velocity etc) |
| 314 |
> |
consFramework->doPreConstraint(); |
| 315 |
|
|
| 316 |
|
#ifdef PROFILE |
| 317 |
|
endProfile(pro3); |
| 333 |
|
MPIcheckPoint(); |
| 334 |
|
#endif // is_mpi |
| 335 |
|
|
| 303 |
– |
|
| 336 |
|
// calc forces |
| 305 |
– |
|
| 337 |
|
calcForce(calcPot, calcStress); |
| 338 |
|
|
| 339 |
|
#ifdef IS_MPI |
| 347 |
|
startProfile( pro6 ); |
| 348 |
|
#endif //profile |
| 349 |
|
|
| 350 |
+ |
consFramework->doPreConstraint(); |
| 351 |
+ |
|
| 352 |
|
// finish the velocity half step |
| 353 |
|
|
| 354 |
|
moveB(); |
| 365 |
|
|
| 366 |
|
|
| 367 |
|
template<typename T> void Integrator<T>::moveA(void){ |
| 368 |
< |
int i, j; |
| 368 |
> |
size_t i, j; |
| 369 |
|
DirectionalAtom* dAtom; |
| 370 |
|
double Tb[3], ji[3]; |
| 371 |
|
double vel[3], pos[3], frc[3]; |
| 372 |
|
double mass; |
| 373 |
< |
|
| 374 |
< |
for (i = 0; i < nAtoms; i++){ |
| 375 |
< |
atoms[i]->getVel(vel); |
| 376 |
< |
atoms[i]->getPos(pos); |
| 377 |
< |
atoms[i]->getFrc(frc); |
| 373 |
> |
double omega; |
| 374 |
> |
|
| 375 |
> |
for (i = 0; i < integrableObjects.size() ; i++){ |
| 376 |
> |
integrableObjects[i]->getVel(vel); |
| 377 |
> |
integrableObjects[i]->getPos(pos); |
| 378 |
> |
integrableObjects[i]->getFrc(frc); |
| 379 |
> |
|
| 380 |
> |
mass = integrableObjects[i]->getMass(); |
| 381 |
|
|
| 346 |
– |
mass = atoms[i]->getMass(); |
| 347 |
– |
|
| 382 |
|
for (j = 0; j < 3; j++){ |
| 383 |
|
// velocity half step |
| 384 |
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
| 386 |
|
pos[j] += dt * vel[j]; |
| 387 |
|
} |
| 388 |
|
|
| 389 |
< |
atoms[i]->setVel(vel); |
| 390 |
< |
atoms[i]->setPos(pos); |
| 389 |
> |
integrableObjects[i]->setVel(vel); |
| 390 |
> |
integrableObjects[i]->setPos(pos); |
| 391 |
|
|
| 392 |
< |
if (atoms[i]->isDirectional()){ |
| 359 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
| 392 |
> |
if (integrableObjects[i]->isDirectional()){ |
| 393 |
|
|
| 394 |
|
// get and convert the torque to body frame |
| 395 |
|
|
| 396 |
< |
dAtom->getTrq(Tb); |
| 397 |
< |
dAtom->lab2Body(Tb); |
| 396 |
> |
integrableObjects[i]->getTrq(Tb); |
| 397 |
> |
integrableObjects[i]->lab2Body(Tb); |
| 398 |
|
|
| 399 |
|
// get the angular momentum, and propagate a half step |
| 400 |
|
|
| 401 |
< |
dAtom->getJ(ji); |
| 401 |
> |
integrableObjects[i]->getJ(ji); |
| 402 |
|
|
| 403 |
|
for (j = 0; j < 3; j++) |
| 404 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
| 405 |
|
|
| 406 |
< |
this->rotationPropagation( dAtom, ji ); |
| 406 |
> |
this->rotationPropagation( integrableObjects[i], ji ); |
| 407 |
|
|
| 408 |
< |
dAtom->setJ(ji); |
| 408 |
> |
integrableObjects[i]->setJ(ji); |
| 409 |
> |
|
| 410 |
|
} |
| 411 |
|
} |
| 412 |
|
|
| 413 |
< |
if (nConstrained){ |
| 380 |
< |
constrainA(); |
| 381 |
< |
} |
| 413 |
> |
consFramework->doConstrainA(); |
| 414 |
|
} |
| 415 |
|
|
| 416 |
|
|
| 417 |
|
template<typename T> void Integrator<T>::moveB(void){ |
| 418 |
|
int i, j; |
| 387 |
– |
DirectionalAtom* dAtom; |
| 419 |
|
double Tb[3], ji[3]; |
| 420 |
|
double vel[3], frc[3]; |
| 421 |
|
double mass; |
| 422 |
|
|
| 423 |
< |
for (i = 0; i < nAtoms; i++){ |
| 424 |
< |
atoms[i]->getVel(vel); |
| 425 |
< |
atoms[i]->getFrc(frc); |
| 423 |
> |
for (i = 0; i < integrableObjects.size(); i++){ |
| 424 |
> |
integrableObjects[i]->getVel(vel); |
| 425 |
> |
integrableObjects[i]->getFrc(frc); |
| 426 |
|
|
| 427 |
< |
mass = atoms[i]->getMass(); |
| 427 |
> |
mass = integrableObjects[i]->getMass(); |
| 428 |
|
|
| 429 |
|
// velocity half step |
| 430 |
|
for (j = 0; j < 3; j++) |
| 431 |
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
| 432 |
|
|
| 433 |
< |
atoms[i]->setVel(vel); |
| 433 |
> |
integrableObjects[i]->setVel(vel); |
| 434 |
|
|
| 435 |
< |
if (atoms[i]->isDirectional()){ |
| 405 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
| 435 |
> |
if (integrableObjects[i]->isDirectional()){ |
| 436 |
|
|
| 437 |
|
// get and convert the torque to body frame |
| 438 |
|
|
| 439 |
< |
dAtom->getTrq(Tb); |
| 440 |
< |
dAtom->lab2Body(Tb); |
| 439 |
> |
integrableObjects[i]->getTrq(Tb); |
| 440 |
> |
integrableObjects[i]->lab2Body(Tb); |
| 441 |
|
|
| 442 |
|
// get the angular momentum, and propagate a half step |
| 443 |
|
|
| 444 |
< |
dAtom->getJ(ji); |
| 444 |
> |
integrableObjects[i]->getJ(ji); |
| 445 |
|
|
| 446 |
|
for (j = 0; j < 3; j++) |
| 447 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
| 448 |
|
|
| 449 |
|
|
| 450 |
< |
dAtom->setJ(ji); |
| 450 |
> |
integrableObjects[i]->setJ(ji); |
| 451 |
|
} |
| 422 |
– |
} |
| 452 |
|
|
| 424 |
– |
if (nConstrained){ |
| 425 |
– |
constrainB(); |
| 453 |
|
} |
| 454 |
+ |
|
| 455 |
+ |
consFramework->doConstrainB(); |
| 456 |
|
} |
| 457 |
|
|
| 458 |
+ |
/* |
| 459 |
|
template<typename T> void Integrator<T>::preMove(void){ |
| 460 |
|
int i, j; |
| 461 |
|
double pos[3]; |
| 714 |
|
simError(); |
| 715 |
|
} |
| 716 |
|
} |
| 717 |
< |
|
| 717 |
> |
*/ |
| 718 |
|
template<typename T> void Integrator<T>::rotationPropagation |
| 719 |
< |
( DirectionalAtom* dAtom, double ji[3] ){ |
| 719 |
> |
( StuntDouble* sd, double ji[3] ){ |
| 720 |
|
|
| 721 |
|
double angle; |
| 722 |
|
double A[3][3], I[3][3]; |
| 723 |
+ |
int i, j, k; |
| 724 |
|
|
| 725 |
|
// use the angular velocities to propagate the rotation matrix a |
| 726 |
|
// full time step |
| 727 |
|
|
| 728 |
< |
dAtom->getA(A); |
| 729 |
< |
dAtom->getI(I); |
| 728 |
> |
sd->getA(A); |
| 729 |
> |
sd->getI(I); |
| 730 |
|
|
| 731 |
< |
// rotate about the x-axis |
| 732 |
< |
angle = dt2 * ji[0] / I[0][0]; |
| 733 |
< |
this->rotate( 1, 2, angle, ji, A ); |
| 731 |
> |
if (sd->isLinear()) { |
| 732 |
> |
i = sd->linearAxis(); |
| 733 |
> |
j = (i+1)%3; |
| 734 |
> |
k = (i+2)%3; |
| 735 |
> |
|
| 736 |
> |
angle = dt2 * ji[j] / I[j][j]; |
| 737 |
> |
this->rotate( k, i, angle, ji, A ); |
| 738 |
|
|
| 739 |
< |
// rotate about the y-axis |
| 740 |
< |
angle = dt2 * ji[1] / I[1][1]; |
| 706 |
< |
this->rotate( 2, 0, angle, ji, A ); |
| 739 |
> |
angle = dt * ji[k] / I[k][k]; |
| 740 |
> |
this->rotate( i, j, angle, ji, A); |
| 741 |
|
|
| 742 |
< |
// rotate about the z-axis |
| 743 |
< |
angle = dt * ji[2] / I[2][2]; |
| 710 |
< |
this->rotate( 0, 1, angle, ji, A); |
| 742 |
> |
angle = dt2 * ji[j] / I[j][j]; |
| 743 |
> |
this->rotate( k, i, angle, ji, A ); |
| 744 |
|
|
| 745 |
< |
// rotate about the y-axis |
| 746 |
< |
angle = dt2 * ji[1] / I[1][1]; |
| 747 |
< |
this->rotate( 2, 0, angle, ji, A ); |
| 748 |
< |
|
| 749 |
< |
// rotate about the x-axis |
| 750 |
< |
angle = dt2 * ji[0] / I[0][0]; |
| 751 |
< |
this->rotate( 1, 2, angle, ji, A ); |
| 752 |
< |
|
| 753 |
< |
dAtom->setA( A ); |
| 745 |
> |
} else { |
| 746 |
> |
// rotate about the x-axis |
| 747 |
> |
angle = dt2 * ji[0] / I[0][0]; |
| 748 |
> |
this->rotate( 1, 2, angle, ji, A ); |
| 749 |
> |
|
| 750 |
> |
// rotate about the y-axis |
| 751 |
> |
angle = dt2 * ji[1] / I[1][1]; |
| 752 |
> |
this->rotate( 2, 0, angle, ji, A ); |
| 753 |
> |
|
| 754 |
> |
// rotate about the z-axis |
| 755 |
> |
angle = dt * ji[2] / I[2][2]; |
| 756 |
> |
sd->addZangle(angle); |
| 757 |
> |
this->rotate( 0, 1, angle, ji, A); |
| 758 |
> |
|
| 759 |
> |
// rotate about the y-axis |
| 760 |
> |
angle = dt2 * ji[1] / I[1][1]; |
| 761 |
> |
this->rotate( 2, 0, angle, ji, A ); |
| 762 |
> |
|
| 763 |
> |
// rotate about the x-axis |
| 764 |
> |
angle = dt2 * ji[0] / I[0][0]; |
| 765 |
> |
this->rotate( 1, 2, angle, ji, A ); |
| 766 |
> |
|
| 767 |
> |
} |
| 768 |
> |
sd->setA( A ); |
| 769 |
|
} |
| 770 |
|
|
| 771 |
|
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |
| 868 |
|
//return a pointer point to local variable which might cause problem |
| 869 |
|
return string(); |
| 870 |
|
} |
| 871 |
+ |
|
| 872 |
+ |
|
| 873 |
+ |
template<typename T> void Integrator<T>::printQuaternion(StuntDouble* sd){ |
| 874 |
+ |
Mat4x4d S; |
| 875 |
+ |
double I[3][3]; |
| 876 |
+ |
Vector4d j4; |
| 877 |
+ |
Vector3d j; |
| 878 |
+ |
Vector3d tempJ; |
| 879 |
+ |
Vector4d qdot; |
| 880 |
+ |
Vector4d omega4; |
| 881 |
+ |
Mat4x4d I4; |
| 882 |
+ |
Quaternion q; |
| 883 |
+ |
double I0; |
| 884 |
+ |
Vector4d p_qua; |
| 885 |
+ |
|
| 886 |
+ |
if (sd->isDirectional()){ |
| 887 |
+ |
sd->getQ(q.vec); |
| 888 |
+ |
sd->getI(I); |
| 889 |
+ |
sd->getJ(j.vec); |
| 890 |
+ |
|
| 891 |
+ |
//omega4[0] = 0.0; |
| 892 |
+ |
//omega4[1] = j[0]/I[0][0]; |
| 893 |
+ |
//omega4[2] = j[1]/I[1][1]; |
| 894 |
+ |
//omega4[3] = j[2]/I[2][2]; |
| 895 |
+ |
|
| 896 |
+ |
//S = getS(q); |
| 897 |
+ |
//qdot = 0.5 * S * omega4; |
| 898 |
+ |
|
| 899 |
+ |
//I0 = (qdot[1] * q[1] * I[0][0] + qdot[2] * q[2] * I[1][1] + qdot[3] * q[3] * I[2][2])/(qdot[1] * q[1]+ qdot[2] * q[2] + qdot[3] * q[3]); |
| 900 |
+ |
|
| 901 |
+ |
//I4.element[0][0] = I0; |
| 902 |
+ |
//I4.element[1][1] = I[0][0]; |
| 903 |
+ |
//I4.element[2][2] = I[1][1]; |
| 904 |
+ |
//I4.element[3][3] = I[2][2]; |
| 905 |
+ |
|
| 906 |
+ |
S = getS(q); |
| 907 |
+ |
j4[0] = 0.0; |
| 908 |
+ |
j4[1] = j[0]; |
| 909 |
+ |
j4[2] = j[1]; |
| 910 |
+ |
j4[3] = j[2]; |
| 911 |
+ |
|
| 912 |
+ |
p_qua = 2 * S * j4; |
| 913 |
+ |
|
| 914 |
+ |
j4 = 0.5 * S.transpose() * p_qua; |
| 915 |
+ |
//cout << "q0^2 + q1^2 + q2^2 + q3^2 = " << q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3] << endl; |
| 916 |
+ |
//cout << "q0*q0dot + q1*q1dot + q2 *q2dot + q3*q3dot = " <<q[0]*qdot[0] + q[1]*qdot[1] + q[2]*qdot[2] + q[3]*qdot[3] << endl; |
| 917 |
+ |
//cout << "q1*q1dot* Ixx + q2*q2dot* Iyy + q3 *q3dot* Izz = " << qdot[1] * q[1] * I[0][0] + qdot[2] * q[2] * I[1][1] + qdot[3] * q[3] * I[2][2] << endl; |
| 918 |
+ |
//cout << "q1*q1dot + q2 *q2dot + q3*q3dot = " << qdot[1] * q[1]+ qdot[2] * q[2] + qdot[3] * q[3] << endl; |
| 919 |
+ |
//cout << "I0 = " << I0 << endl; |
| 920 |
+ |
cout << "p_qua[0] = " << p_qua[0] << endl; |
| 921 |
+ |
} |
| 922 |
+ |
} |
| 923 |
+ |
|
| 924 |
+ |
template<typename T> Mat4x4d Integrator<T>::getS(const Quaternion& q){ |
| 925 |
+ |
Mat4x4d result; |
| 926 |
+ |
|
| 927 |
+ |
result.element[0][0] = q.x; |
| 928 |
+ |
result.element[0][1] = -q.y; |
| 929 |
+ |
result.element[0][2] = -q.z; |
| 930 |
+ |
result.element[0][3] = -q.w; |
| 931 |
+ |
|
| 932 |
+ |
result.element[1][0] = q.y; |
| 933 |
+ |
result.element[1][1] = q.x; |
| 934 |
+ |
result.element[1][2] = -q.w; |
| 935 |
+ |
result.element[1][3] = q.z; |
| 936 |
+ |
|
| 937 |
+ |
result.element[2][0] = q.z; |
| 938 |
+ |
result.element[2][1] = q.w; |
| 939 |
+ |
result.element[2][2] = q.x; |
| 940 |
+ |
result.element[2][3] = -q.y; |
| 941 |
+ |
|
| 942 |
+ |
result.element[3][0] = q.w; |
| 943 |
+ |
result.element[3][1] = -q.z; |
| 944 |
+ |
result.element[3][2] = q.y; |
| 945 |
+ |
result.element[3][3] = q.x; |
| 946 |
+ |
|
| 947 |
+ |
return result; |
| 948 |
+ |
} |
| 949 |
+ |
|