| 31 | 
  | 
  } | 
| 32 | 
  | 
 | 
| 33 | 
  | 
  nAtoms = info->n_atoms; | 
| 34 | 
< | 
 | 
| 34 | 
> | 
  integrableObjects = info->integrableObjects; | 
| 35 | 
> | 
  | 
| 36 | 
  | 
  // check for constraints | 
| 37 | 
  | 
 | 
| 38 | 
  | 
  constrainedA = NULL; | 
| 45 | 
  | 
  nConstrained = 0; | 
| 46 | 
  | 
 | 
| 47 | 
  | 
  checkConstraints(); | 
| 48 | 
+ | 
 | 
| 49 | 
+ | 
  for (i=0; i<nMols; i++) | 
| 50 | 
+ | 
    zAngle[i] = 0.0; | 
| 51 | 
  | 
} | 
| 52 | 
  | 
 | 
| 53 | 
  | 
template<typename T> Integrator<T>::~Integrator(){ | 
| 72 | 
  | 
 | 
| 73 | 
  | 
  SRI** theArray; | 
| 74 | 
  | 
  for (int i = 0; i < nMols; i++){ | 
| 75 | 
< | 
    theArray = (SRI * *) molecules[i].getMyBonds(); | 
| 75 | 
> | 
 | 
| 76 | 
> | 
          theArray = (SRI * *) molecules[i].getMyBonds(); | 
| 77 | 
  | 
    for (int j = 0; j < molecules[i].getNBonds(); j++){ | 
| 78 | 
  | 
      constrained = theArray[j]->is_constrained(); | 
| 79 | 
  | 
 | 
| 119 | 
  | 
    } | 
| 120 | 
  | 
  } | 
| 121 | 
  | 
 | 
| 122 | 
+ | 
 | 
| 123 | 
  | 
  if (nConstrained > 0){ | 
| 124 | 
  | 
    isConstrained = 1; | 
| 125 | 
  | 
 | 
| 141 | 
  | 
    } | 
| 142 | 
  | 
 | 
| 143 | 
  | 
 | 
| 144 | 
< | 
    // save oldAtoms to check for lode balanceing later on. | 
| 144 | 
> | 
    // save oldAtoms to check for lode balancing later on. | 
| 145 | 
  | 
 | 
| 146 | 
  | 
    oldAtoms = nAtoms; | 
| 147 | 
  | 
 | 
| 163 | 
  | 
  double thermalTime = info->thermalTime; | 
| 164 | 
  | 
  double resetTime = info->resetTime; | 
| 165 | 
  | 
 | 
| 166 | 
< | 
 | 
| 166 | 
> | 
  double difference; | 
| 167 | 
  | 
  double currSample; | 
| 168 | 
  | 
  double currThermal; | 
| 169 | 
  | 
  double currStatus; | 
| 182 | 
  | 
 | 
| 183 | 
  | 
  readyCheck(); | 
| 184 | 
  | 
 | 
| 185 | 
+ | 
  // remove center of mass drift velocity (in case we passed in a configuration | 
| 186 | 
+ | 
  // that was drifting | 
| 187 | 
+ | 
  tStats->removeCOMdrift(); | 
| 188 | 
+ | 
 | 
| 189 | 
+ | 
  // initialize the retraints if necessary | 
| 190 | 
+ | 
  if (info->useThermInt) { | 
| 191 | 
+ | 
    myFF->initRestraints(); | 
| 192 | 
+ | 
  } | 
| 193 | 
+ | 
 | 
| 194 | 
  | 
  // initialize the forces before the first step | 
| 195 | 
  | 
 | 
| 196 | 
  | 
  calcForce(1, 1); | 
| 197 | 
< | 
 | 
| 197 | 
> | 
   | 
| 198 | 
  | 
  if (nConstrained){ | 
| 199 | 
  | 
    preMove(); | 
| 200 | 
  | 
    constrainA(); | 
| 222 | 
  | 
  MPIcheckPoint(); | 
| 223 | 
  | 
#endif // is_mpi | 
| 224 | 
  | 
 | 
| 225 | 
< | 
  while (info->getTime() < runTime){ | 
| 226 | 
< | 
    if ((info->getTime() + dt) >= currStatus){ | 
| 225 | 
> | 
  while (info->getTime() < runTime && !stopIntegrator()){ | 
| 226 | 
> | 
    difference = info->getTime() + dt - currStatus; | 
| 227 | 
> | 
    if (difference > 0 || fabs(difference) < 1e-4 ){ | 
| 228 | 
  | 
      calcPot = 1; | 
| 229 | 
  | 
      calcStress = 1; | 
| 230 | 
  | 
    } | 
| 257 | 
  | 
 | 
| 258 | 
  | 
    if (info->getTime() >= currStatus){ | 
| 259 | 
  | 
      statOut->writeStat(info->getTime()); | 
| 260 | 
+ | 
      statOut->writeRaw(info->getTime()); | 
| 261 | 
  | 
      calcPot = 0; | 
| 262 | 
  | 
      calcStress = 0; | 
| 263 | 
  | 
      currStatus += statusTime; | 
| 280 | 
  | 
#endif // is_mpi | 
| 281 | 
  | 
  } | 
| 282 | 
  | 
 | 
| 283 | 
+ | 
  // dump out a file containing the omega values for the final configuration | 
| 284 | 
+ | 
  if (info->useThermInt) | 
| 285 | 
+ | 
    myFF->dumpzAngle(); | 
| 286 | 
+ | 
   | 
| 287 | 
  | 
 | 
| 267 | 
– | 
  // write the last frame | 
| 268 | 
– | 
  dumpOut->writeDump(info->getTime()); | 
| 269 | 
– | 
 | 
| 288 | 
  | 
  delete dumpOut; | 
| 289 | 
  | 
  delete statOut; | 
| 290 | 
  | 
} | 
| 351 | 
  | 
 | 
| 352 | 
  | 
 | 
| 353 | 
  | 
template<typename T> void Integrator<T>::moveA(void){ | 
| 354 | 
< | 
  int i, j; | 
| 354 | 
> | 
  size_t i, j; | 
| 355 | 
  | 
  DirectionalAtom* dAtom; | 
| 356 | 
  | 
  double Tb[3], ji[3]; | 
| 357 | 
  | 
  double vel[3], pos[3], frc[3]; | 
| 358 | 
  | 
  double mass; | 
| 359 | 
< | 
 | 
| 360 | 
< | 
  for (i = 0; i < nAtoms; i++){ | 
| 361 | 
< | 
    atoms[i]->getVel(vel); | 
| 362 | 
< | 
    atoms[i]->getPos(pos); | 
| 363 | 
< | 
    atoms[i]->getFrc(frc); | 
| 359 | 
> | 
  | 
| 360 | 
> | 
  for (i = 0; i < integrableObjects.size() ; i++){ | 
| 361 | 
> | 
    integrableObjects[i]->getVel(vel); | 
| 362 | 
> | 
    integrableObjects[i]->getPos(pos); | 
| 363 | 
> | 
    integrableObjects[i]->getFrc(frc); | 
| 364 | 
> | 
     | 
| 365 | 
> | 
    mass = integrableObjects[i]->getMass(); | 
| 366 | 
  | 
 | 
| 347 | 
– | 
    mass = atoms[i]->getMass(); | 
| 348 | 
– | 
 | 
| 367 | 
  | 
    for (j = 0; j < 3; j++){ | 
| 368 | 
  | 
      // velocity half step | 
| 369 | 
  | 
      vel[j] += (dt2 * frc[j] / mass) * eConvert; | 
| 371 | 
  | 
      pos[j] += dt * vel[j]; | 
| 372 | 
  | 
    } | 
| 373 | 
  | 
 | 
| 374 | 
< | 
    atoms[i]->setVel(vel); | 
| 375 | 
< | 
    atoms[i]->setPos(pos); | 
| 374 | 
> | 
    integrableObjects[i]->setVel(vel); | 
| 375 | 
> | 
    integrableObjects[i]->setPos(pos); | 
| 376 | 
  | 
 | 
| 377 | 
< | 
    if (atoms[i]->isDirectional()){ | 
| 360 | 
< | 
      dAtom = (DirectionalAtom *) atoms[i]; | 
| 377 | 
> | 
    if (integrableObjects[i]->isDirectional()){ | 
| 378 | 
  | 
 | 
| 379 | 
  | 
      // get and convert the torque to body frame | 
| 380 | 
  | 
 | 
| 381 | 
< | 
      dAtom->getTrq(Tb); | 
| 382 | 
< | 
      dAtom->lab2Body(Tb); | 
| 381 | 
> | 
      integrableObjects[i]->getTrq(Tb); | 
| 382 | 
> | 
      integrableObjects[i]->lab2Body(Tb); | 
| 383 | 
  | 
 | 
| 384 | 
  | 
      // get the angular momentum, and propagate a half step | 
| 385 | 
  | 
 | 
| 386 | 
< | 
      dAtom->getJ(ji); | 
| 386 | 
> | 
      integrableObjects[i]->getJ(ji); | 
| 387 | 
  | 
 | 
| 388 | 
  | 
      for (j = 0; j < 3; j++) | 
| 389 | 
  | 
        ji[j] += (dt2 * Tb[j]) * eConvert; | 
| 390 | 
  | 
 | 
| 391 | 
< | 
      this->rotationPropagation( dAtom, ji ); | 
| 391 | 
> | 
      this->rotationPropagation( integrableObjects[i], ji ); | 
| 392 | 
  | 
 | 
| 393 | 
< | 
      dAtom->setJ(ji); | 
| 393 | 
> | 
      integrableObjects[i]->setJ(ji); | 
| 394 | 
  | 
    } | 
| 395 | 
  | 
  } | 
| 396 | 
  | 
 | 
| 402 | 
  | 
 | 
| 403 | 
  | 
template<typename T> void Integrator<T>::moveB(void){ | 
| 404 | 
  | 
  int i, j; | 
| 388 | 
– | 
  DirectionalAtom* dAtom; | 
| 405 | 
  | 
  double Tb[3], ji[3]; | 
| 406 | 
  | 
  double vel[3], frc[3]; | 
| 407 | 
  | 
  double mass; | 
| 408 | 
  | 
 | 
| 409 | 
< | 
  for (i = 0; i < nAtoms; i++){ | 
| 410 | 
< | 
    atoms[i]->getVel(vel); | 
| 411 | 
< | 
    atoms[i]->getFrc(frc); | 
| 409 | 
> | 
  for (i = 0; i < integrableObjects.size(); i++){ | 
| 410 | 
> | 
    integrableObjects[i]->getVel(vel); | 
| 411 | 
> | 
    integrableObjects[i]->getFrc(frc); | 
| 412 | 
  | 
 | 
| 413 | 
< | 
    mass = atoms[i]->getMass(); | 
| 413 | 
> | 
    mass = integrableObjects[i]->getMass(); | 
| 414 | 
  | 
 | 
| 415 | 
  | 
    // velocity half step | 
| 416 | 
  | 
    for (j = 0; j < 3; j++) | 
| 417 | 
  | 
      vel[j] += (dt2 * frc[j] / mass) * eConvert; | 
| 418 | 
  | 
 | 
| 419 | 
< | 
    atoms[i]->setVel(vel); | 
| 419 | 
> | 
    integrableObjects[i]->setVel(vel); | 
| 420 | 
  | 
 | 
| 421 | 
< | 
    if (atoms[i]->isDirectional()){ | 
| 406 | 
< | 
      dAtom = (DirectionalAtom *) atoms[i]; | 
| 421 | 
> | 
    if (integrableObjects[i]->isDirectional()){ | 
| 422 | 
  | 
 | 
| 423 | 
  | 
      // get and convert the torque to body frame | 
| 424 | 
  | 
 | 
| 425 | 
< | 
      dAtom->getTrq(Tb); | 
| 426 | 
< | 
      dAtom->lab2Body(Tb); | 
| 425 | 
> | 
      integrableObjects[i]->getTrq(Tb); | 
| 426 | 
> | 
      integrableObjects[i]->lab2Body(Tb); | 
| 427 | 
  | 
 | 
| 428 | 
  | 
      // get the angular momentum, and propagate a half step | 
| 429 | 
  | 
 | 
| 430 | 
< | 
      dAtom->getJ(ji); | 
| 430 | 
> | 
      integrableObjects[i]->getJ(ji); | 
| 431 | 
  | 
 | 
| 432 | 
  | 
      for (j = 0; j < 3; j++) | 
| 433 | 
  | 
        ji[j] += (dt2 * Tb[j]) * eConvert; | 
| 434 | 
  | 
 | 
| 435 | 
  | 
 | 
| 436 | 
< | 
      dAtom->setJ(ji); | 
| 436 | 
> | 
      integrableObjects[i]->setJ(ji); | 
| 437 | 
  | 
    } | 
| 438 | 
  | 
  } | 
| 439 | 
  | 
 | 
| 702 | 
  | 
} | 
| 703 | 
  | 
 | 
| 704 | 
  | 
template<typename T> void Integrator<T>::rotationPropagation | 
| 705 | 
< | 
( DirectionalAtom* dAtom, double ji[3] ){ | 
| 705 | 
> | 
( StuntDouble* sd, double ji[3] ){ | 
| 706 | 
  | 
 | 
| 707 | 
  | 
  double angle; | 
| 708 | 
  | 
  double A[3][3], I[3][3]; | 
| 709 | 
+ | 
  int i, j, k; | 
| 710 | 
  | 
 | 
| 711 | 
  | 
  // use the angular velocities to propagate the rotation matrix a | 
| 712 | 
  | 
  // full time step | 
| 713 | 
  | 
 | 
| 714 | 
< | 
  dAtom->getA(A); | 
| 715 | 
< | 
  dAtom->getI(I); | 
| 714 | 
> | 
  sd->getA(A); | 
| 715 | 
> | 
  sd->getI(I); | 
| 716 | 
  | 
 | 
| 717 | 
< | 
  // rotate about the x-axis | 
| 718 | 
< | 
  angle = dt2 * ji[0] / I[0][0]; | 
| 719 | 
< | 
  this->rotate( 1, 2, angle, ji, A ); | 
| 717 | 
> | 
  if (sd->isLinear()) { | 
| 718 | 
> | 
    i = sd->linearAxis(); | 
| 719 | 
> | 
    j = (i+1)%3; | 
| 720 | 
> | 
    k = (i+2)%3; | 
| 721 | 
> | 
     | 
| 722 | 
> | 
    angle = dt2 * ji[j] / I[j][j]; | 
| 723 | 
> | 
    this->rotate( k, i, angle, ji, A ); | 
| 724 | 
  | 
 | 
| 725 | 
< | 
  // rotate about the y-axis | 
| 726 | 
< | 
  angle = dt2 * ji[1] / I[1][1]; | 
| 707 | 
< | 
  this->rotate( 2, 0, angle, ji, A ); | 
| 708 | 
< | 
 | 
| 709 | 
< | 
  // rotate about the z-axis | 
| 710 | 
< | 
  angle = dt * ji[2] / I[2][2]; | 
| 711 | 
< | 
  this->rotate( 0, 1, angle, ji, A); | 
| 725 | 
> | 
    angle = dt * ji[k] / I[k][k]; | 
| 726 | 
> | 
    this->rotate( i, j, angle, ji, A); | 
| 727 | 
  | 
 | 
| 728 | 
< | 
  // rotate about the y-axis | 
| 729 | 
< | 
  angle = dt2 * ji[1] / I[1][1]; | 
| 715 | 
< | 
  this->rotate( 2, 0, angle, ji, A ); | 
| 728 | 
> | 
    angle = dt2 * ji[j] / I[j][j]; | 
| 729 | 
> | 
    this->rotate( k, i, angle, ji, A ); | 
| 730 | 
  | 
 | 
| 731 | 
< | 
  // rotate about the x-axis | 
| 732 | 
< | 
  angle = dt2 * ji[0] / I[0][0]; | 
| 733 | 
< | 
  this->rotate( 1, 2, angle, ji, A ); | 
| 734 | 
< | 
 | 
| 735 | 
< | 
  dAtom->setA( A  ); | 
| 731 | 
> | 
  } else { | 
| 732 | 
> | 
    // rotate about the x-axis | 
| 733 | 
> | 
    angle = dt2 * ji[0] / I[0][0]; | 
| 734 | 
> | 
    this->rotate( 1, 2, angle, ji, A ); | 
| 735 | 
> | 
     | 
| 736 | 
> | 
    // rotate about the y-axis | 
| 737 | 
> | 
    angle = dt2 * ji[1] / I[1][1]; | 
| 738 | 
> | 
    this->rotate( 2, 0, angle, ji, A ); | 
| 739 | 
> | 
     | 
| 740 | 
> | 
    // rotate about the z-axis | 
| 741 | 
> | 
    angle = dt * ji[2] / I[2][2]; | 
| 742 | 
> | 
    this->rotate( 0, 1, angle, ji, A); | 
| 743 | 
> | 
     | 
| 744 | 
> | 
    // rotate about the y-axis | 
| 745 | 
> | 
    angle = dt2 * ji[1] / I[1][1]; | 
| 746 | 
> | 
    this->rotate( 2, 0, angle, ji, A ); | 
| 747 | 
> | 
     | 
| 748 | 
> | 
    // rotate about the x-axis | 
| 749 | 
> | 
    angle = dt2 * ji[0] / I[0][0]; | 
| 750 | 
> | 
    this->rotate( 1, 2, angle, ji, A ); | 
| 751 | 
> | 
     | 
| 752 | 
> | 
  } | 
| 753 | 
> | 
  sd->setA( A  ); | 
| 754 | 
  | 
} | 
| 755 | 
  | 
 | 
| 756 | 
  | 
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |