| 11 | 
  | 
#include "simError.h" | 
| 12 | 
  | 
 | 
| 13 | 
  | 
 | 
| 14 | 
< | 
Integrator::Integrator( SimInfo *theInfo, ForceFields* the_ff ){ | 
| 15 | 
< | 
   | 
| 14 | 
> | 
template<typename T> Integrator<T>::Integrator(SimInfo* theInfo, | 
| 15 | 
> | 
                                               ForceFields* the_ff){ | 
| 16 | 
  | 
  info = theInfo; | 
| 17 | 
  | 
  myFF = the_ff; | 
| 18 | 
  | 
  isFirst = 1; | 
| 21 | 
  | 
  nMols = info->n_mol; | 
| 22 | 
  | 
 | 
| 23 | 
  | 
  // give a little love back to the SimInfo object | 
| 24 | 
– | 
   | 
| 25 | 
– | 
  if( info->the_integrator != NULL ) delete info->the_integrator; | 
| 26 | 
– | 
  info->the_integrator = this; | 
| 24 | 
  | 
 | 
| 25 | 
+ | 
  if (info->the_integrator != NULL){ | 
| 26 | 
+ | 
    delete info->the_integrator; | 
| 27 | 
+ | 
  } | 
| 28 | 
+ | 
   | 
| 29 | 
  | 
  nAtoms = info->n_atoms; | 
| 30 | 
  | 
 | 
| 31 | 
  | 
  // check for constraints | 
| 32 | 
< | 
   | 
| 33 | 
< | 
  constrainedA    = NULL; | 
| 34 | 
< | 
  constrainedB    = NULL; | 
| 32 | 
> | 
 | 
| 33 | 
> | 
  constrainedA = NULL; | 
| 34 | 
> | 
  constrainedB = NULL; | 
| 35 | 
  | 
  constrainedDsqr = NULL; | 
| 36 | 
< | 
  moving          = NULL; | 
| 37 | 
< | 
  moved           = NULL; | 
| 38 | 
< | 
  oldPos          = NULL; | 
| 39 | 
< | 
   | 
| 36 | 
> | 
  moving = NULL; | 
| 37 | 
> | 
  moved = NULL; | 
| 38 | 
> | 
  oldPos = NULL; | 
| 39 | 
> | 
 | 
| 40 | 
  | 
  nConstrained = 0; | 
| 41 | 
  | 
 | 
| 42 | 
  | 
  checkConstraints(); | 
| 43 | 
  | 
} | 
| 44 | 
  | 
 | 
| 45 | 
< | 
Integrator::~Integrator() { | 
| 46 | 
< | 
   | 
| 46 | 
< | 
  if( nConstrained ){ | 
| 45 | 
> | 
template<typename T> Integrator<T>::~Integrator(){ | 
| 46 | 
> | 
  if (nConstrained){ | 
| 47 | 
  | 
    delete[] constrainedA; | 
| 48 | 
  | 
    delete[] constrainedB; | 
| 49 | 
  | 
    delete[] constrainedDsqr; | 
| 51 | 
  | 
    delete[] moved; | 
| 52 | 
  | 
    delete[] oldPos; | 
| 53 | 
  | 
  } | 
| 54 | 
– | 
   | 
| 54 | 
  | 
} | 
| 55 | 
  | 
 | 
| 56 | 
< | 
void Integrator::checkConstraints( void ){ | 
| 58 | 
< | 
 | 
| 59 | 
< | 
 | 
| 56 | 
> | 
template<typename T> void Integrator<T>::checkConstraints(void){ | 
| 57 | 
  | 
  isConstrained = 0; | 
| 58 | 
  | 
 | 
| 59 | 
< | 
  Constraint *temp_con; | 
| 60 | 
< | 
  Constraint *dummy_plug; | 
| 59 | 
> | 
  Constraint* temp_con; | 
| 60 | 
> | 
  Constraint* dummy_plug; | 
| 61 | 
  | 
  temp_con = new Constraint[info->n_SRI]; | 
| 62 | 
  | 
  nConstrained = 0; | 
| 63 | 
  | 
  int constrained = 0; | 
| 64 | 
< | 
   | 
| 64 | 
> | 
 | 
| 65 | 
  | 
  SRI** theArray; | 
| 66 | 
< | 
  for(int i = 0; i < nMols; i++){ | 
| 67 | 
< | 
     | 
| 68 | 
< | 
    theArray = (SRI**) molecules[i].getMyBonds(); | 
| 72 | 
< | 
    for(int j=0; j<molecules[i].getNBonds(); j++){ | 
| 73 | 
< | 
       | 
| 66 | 
> | 
  for (int i = 0; i < nMols; i++){ | 
| 67 | 
> | 
    theArray = (SRI * *) molecules[i].getMyBonds(); | 
| 68 | 
> | 
    for (int j = 0; j < molecules[i].getNBonds(); j++){ | 
| 69 | 
  | 
      constrained = theArray[j]->is_constrained(); | 
| 70 | 
  | 
 | 
| 71 | 
< | 
      if(constrained){ | 
| 71 | 
> | 
      if (constrained){ | 
| 72 | 
> | 
        dummy_plug = theArray[j]->get_constraint(); | 
| 73 | 
> | 
        temp_con[nConstrained].set_a(dummy_plug->get_a()); | 
| 74 | 
> | 
        temp_con[nConstrained].set_b(dummy_plug->get_b()); | 
| 75 | 
> | 
        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); | 
| 76 | 
  | 
 | 
| 77 | 
< | 
        dummy_plug = theArray[j]->get_constraint(); | 
| 78 | 
< | 
        temp_con[nConstrained].set_a( dummy_plug->get_a() ); | 
| 79 | 
< | 
        temp_con[nConstrained].set_b( dummy_plug->get_b() ); | 
| 81 | 
< | 
        temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); | 
| 82 | 
< | 
         | 
| 83 | 
< | 
        nConstrained++; | 
| 84 | 
< | 
        constrained = 0; | 
| 85 | 
< | 
      }  | 
| 77 | 
> | 
        nConstrained++; | 
| 78 | 
> | 
        constrained = 0; | 
| 79 | 
> | 
      } | 
| 80 | 
  | 
    } | 
| 81 | 
  | 
 | 
| 82 | 
< | 
    theArray = (SRI**) molecules[i].getMyBends(); | 
| 83 | 
< | 
    for(int j=0; j<molecules[i].getNBends(); j++){ | 
| 90 | 
< | 
       | 
| 82 | 
> | 
    theArray = (SRI * *) molecules[i].getMyBends(); | 
| 83 | 
> | 
    for (int j = 0; j < molecules[i].getNBends(); j++){ | 
| 84 | 
  | 
      constrained = theArray[j]->is_constrained(); | 
| 85 | 
< | 
       | 
| 86 | 
< | 
      if(constrained){ | 
| 87 | 
< | 
         | 
| 88 | 
< | 
        dummy_plug = theArray[j]->get_constraint(); | 
| 89 | 
< | 
        temp_con[nConstrained].set_a( dummy_plug->get_a() ); | 
| 90 | 
< | 
        temp_con[nConstrained].set_b( dummy_plug->get_b() ); | 
| 91 | 
< | 
        temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); | 
| 92 | 
< | 
         | 
| 93 | 
< | 
        nConstrained++; | 
| 101 | 
< | 
        constrained = 0; | 
| 85 | 
> | 
 | 
| 86 | 
> | 
      if (constrained){ | 
| 87 | 
> | 
        dummy_plug = theArray[j]->get_constraint(); | 
| 88 | 
> | 
        temp_con[nConstrained].set_a(dummy_plug->get_a()); | 
| 89 | 
> | 
        temp_con[nConstrained].set_b(dummy_plug->get_b()); | 
| 90 | 
> | 
        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); | 
| 91 | 
> | 
 | 
| 92 | 
> | 
        nConstrained++; | 
| 93 | 
> | 
        constrained = 0; | 
| 94 | 
  | 
      } | 
| 95 | 
  | 
    } | 
| 96 | 
  | 
 | 
| 97 | 
< | 
    theArray = (SRI**) molecules[i].getMyTorsions(); | 
| 98 | 
< | 
    for(int j=0; j<molecules[i].getNTorsions(); j++){ | 
| 107 | 
< | 
       | 
| 97 | 
> | 
    theArray = (SRI * *) molecules[i].getMyTorsions(); | 
| 98 | 
> | 
    for (int j = 0; j < molecules[i].getNTorsions(); j++){ | 
| 99 | 
  | 
      constrained = theArray[j]->is_constrained(); | 
| 100 | 
< | 
       | 
| 101 | 
< | 
      if(constrained){ | 
| 102 | 
< | 
         | 
| 103 | 
< | 
        dummy_plug = theArray[j]->get_constraint(); | 
| 104 | 
< | 
        temp_con[nConstrained].set_a( dummy_plug->get_a() ); | 
| 105 | 
< | 
        temp_con[nConstrained].set_b( dummy_plug->get_b() ); | 
| 106 | 
< | 
        temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); | 
| 107 | 
< | 
         | 
| 108 | 
< | 
        nConstrained++; | 
| 118 | 
< | 
        constrained = 0; | 
| 100 | 
> | 
 | 
| 101 | 
> | 
      if (constrained){ | 
| 102 | 
> | 
        dummy_plug = theArray[j]->get_constraint(); | 
| 103 | 
> | 
        temp_con[nConstrained].set_a(dummy_plug->get_a()); | 
| 104 | 
> | 
        temp_con[nConstrained].set_b(dummy_plug->get_b()); | 
| 105 | 
> | 
        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); | 
| 106 | 
> | 
 | 
| 107 | 
> | 
        nConstrained++; | 
| 108 | 
> | 
        constrained = 0; | 
| 109 | 
  | 
      } | 
| 110 | 
  | 
    } | 
| 111 | 
  | 
  } | 
| 112 | 
  | 
 | 
| 113 | 
< | 
  if(nConstrained > 0){ | 
| 124 | 
< | 
     | 
| 113 | 
> | 
  if (nConstrained > 0){ | 
| 114 | 
  | 
    isConstrained = 1; | 
| 115 | 
  | 
 | 
| 116 | 
< | 
    if(constrainedA != NULL )    delete[] constrainedA; | 
| 117 | 
< | 
    if(constrainedB != NULL )    delete[] constrainedB; | 
| 118 | 
< | 
    if(constrainedDsqr != NULL ) delete[] constrainedDsqr; | 
| 116 | 
> | 
    if (constrainedA != NULL) | 
| 117 | 
> | 
      delete[] constrainedA; | 
| 118 | 
> | 
    if (constrainedB != NULL) | 
| 119 | 
> | 
      delete[] constrainedB; | 
| 120 | 
> | 
    if (constrainedDsqr != NULL) | 
| 121 | 
> | 
      delete[] constrainedDsqr; | 
| 122 | 
  | 
 | 
| 123 | 
< | 
    constrainedA =    new int[nConstrained]; | 
| 124 | 
< | 
    constrainedB =    new int[nConstrained]; | 
| 123 | 
> | 
    constrainedA = new int[nConstrained]; | 
| 124 | 
> | 
    constrainedB = new int[nConstrained]; | 
| 125 | 
  | 
    constrainedDsqr = new double[nConstrained]; | 
| 126 | 
< | 
     | 
| 127 | 
< | 
    for( int i = 0; i < nConstrained; i++){ | 
| 136 | 
< | 
       | 
| 126 | 
> | 
 | 
| 127 | 
> | 
    for (int i = 0; i < nConstrained; i++){ | 
| 128 | 
  | 
      constrainedA[i] = temp_con[i].get_a(); | 
| 129 | 
  | 
      constrainedB[i] = temp_con[i].get_b(); | 
| 130 | 
  | 
      constrainedDsqr[i] = temp_con[i].get_dsqr(); | 
| 140 | 
– | 
 | 
| 131 | 
  | 
    } | 
| 132 | 
  | 
 | 
| 133 | 
< | 
     | 
| 133 | 
> | 
 | 
| 134 | 
  | 
    // save oldAtoms to check for lode balanceing later on. | 
| 135 | 
< | 
     | 
| 135 | 
> | 
 | 
| 136 | 
  | 
    oldAtoms = nAtoms; | 
| 137 | 
< | 
     | 
| 137 | 
> | 
 | 
| 138 | 
  | 
    moving = new int[nAtoms]; | 
| 139 | 
< | 
    moved  = new int[nAtoms]; | 
| 139 | 
> | 
    moved = new int[nAtoms]; | 
| 140 | 
  | 
 | 
| 141 | 
< | 
    oldPos = new double[nAtoms*3]; | 
| 141 | 
> | 
    oldPos = new double[nAtoms * 3]; | 
| 142 | 
  | 
  } | 
| 143 | 
< | 
   | 
| 143 | 
> | 
 | 
| 144 | 
  | 
  delete[] temp_con; | 
| 145 | 
  | 
} | 
| 146 | 
  | 
 | 
| 147 | 
  | 
 | 
| 148 | 
< | 
void Integrator::integrate( void ){ | 
| 148 | 
> | 
template<typename T> void Integrator<T>::integrate(void){ | 
| 149 | 
  | 
 | 
| 150 | 
< | 
  int i, j;                         // loop counters | 
| 151 | 
< | 
 | 
| 152 | 
< | 
  double runTime     = info->run_time; | 
| 163 | 
< | 
  double sampleTime  = info->sampleTime; | 
| 164 | 
< | 
  double statusTime  = info->statusTime; | 
| 150 | 
> | 
  double runTime = info->run_time; | 
| 151 | 
> | 
  double sampleTime = info->sampleTime; | 
| 152 | 
> | 
  double statusTime = info->statusTime; | 
| 153 | 
  | 
  double thermalTime = info->thermalTime; | 
| 154 | 
+ | 
  double resetTime = info->resetTime; | 
| 155 | 
  | 
 | 
| 156 | 
+ | 
 | 
| 157 | 
  | 
  double currSample; | 
| 158 | 
  | 
  double currThermal; | 
| 159 | 
  | 
  double currStatus; | 
| 160 | 
< | 
 | 
| 160 | 
> | 
  double currReset; | 
| 161 | 
> | 
   | 
| 162 | 
  | 
  int calcPot, calcStress; | 
| 172 | 
– | 
  int isError; | 
| 163 | 
  | 
 | 
| 164 | 
< | 
  tStats   = new Thermo( info ); | 
| 165 | 
< | 
  statOut  = new StatWriter( info ); | 
| 166 | 
< | 
  dumpOut  = new DumpWriter( info ); | 
| 164 | 
> | 
  tStats = new Thermo(info); | 
| 165 | 
> | 
  statOut = new StatWriter(info); | 
| 166 | 
> | 
  dumpOut = new DumpWriter(info); | 
| 167 | 
  | 
 | 
| 168 | 
  | 
  atoms = info->atoms; | 
| 179 | 
– | 
  DirectionalAtom* dAtom; | 
| 169 | 
  | 
 | 
| 170 | 
  | 
  dt = info->dt; | 
| 171 | 
  | 
  dt2 = 0.5 * dt; | 
| 172 | 
  | 
 | 
| 173 | 
+ | 
  readyCheck(); | 
| 174 | 
+ | 
 | 
| 175 | 
  | 
  // initialize the forces before the first step | 
| 176 | 
  | 
 | 
| 177 | 
< | 
  myFF->doForces(1,1); | 
| 178 | 
< | 
   | 
| 179 | 
< | 
  if( info->setTemp ){ | 
| 180 | 
< | 
     | 
| 181 | 
< | 
    tStats->velocitize(); | 
| 177 | 
> | 
  calcForce(1, 1); | 
| 178 | 
> | 
 | 
| 179 | 
> | 
  if (nConstrained){ | 
| 180 | 
> | 
    preMove(); | 
| 181 | 
> | 
    constrainA(); | 
| 182 | 
> | 
    calcForce(1, 1);     | 
| 183 | 
> | 
    constrainB(); | 
| 184 | 
  | 
  } | 
| 185 | 
  | 
   | 
| 186 | 
+ | 
  if (info->setTemp){ | 
| 187 | 
+ | 
    thermalize(); | 
| 188 | 
+ | 
  } | 
| 189 | 
+ | 
 | 
| 190 | 
  | 
  calcPot     = 0; | 
| 191 | 
  | 
  calcStress  = 0; | 
| 192 | 
< | 
  currSample  = sampleTime; | 
| 193 | 
< | 
  currThermal = thermalTime; | 
| 194 | 
< | 
  currStatus  = statusTime; | 
| 192 | 
> | 
  currSample  = sampleTime + info->getTime(); | 
| 193 | 
> | 
  currThermal = thermalTime+ info->getTime(); | 
| 194 | 
> | 
  currStatus  = statusTime + info->getTime(); | 
| 195 | 
> | 
  currReset   = resetTime  + info->getTime(); | 
| 196 | 
  | 
 | 
| 197 | 
< | 
  dumpOut->writeDump( info->currTime ); | 
| 198 | 
< | 
  statOut->writeStat( info->currTime ); | 
| 197 | 
> | 
  dumpOut->writeDump(info->getTime()); | 
| 198 | 
> | 
  statOut->writeStat(info->getTime()); | 
| 199 | 
  | 
 | 
| 202 | 
– | 
  readyCheck(); | 
| 200 | 
  | 
 | 
| 201 | 
+ | 
 | 
| 202 | 
  | 
#ifdef IS_MPI | 
| 203 | 
< | 
  strcpy( checkPointMsg,  | 
| 206 | 
< | 
          "The integrator is ready to go." ); | 
| 203 | 
> | 
  strcpy(checkPointMsg, "The integrator is ready to go."); | 
| 204 | 
  | 
  MPIcheckPoint(); | 
| 205 | 
  | 
#endif // is_mpi | 
| 206 | 
  | 
 | 
| 207 | 
< | 
  while( info->currTime < runTime ){ | 
| 208 | 
< | 
 | 
| 212 | 
< | 
    if( (info->currTime+dt) >= currStatus ){ | 
| 207 | 
> | 
  while (info->getTime() < runTime){ | 
| 208 | 
> | 
    if ((info->getTime() + dt) >= currStatus){ | 
| 209 | 
  | 
      calcPot = 1; | 
| 210 | 
  | 
      calcStress = 1; | 
| 211 | 
  | 
    } | 
| 212 | 
  | 
 | 
| 213 | 
< | 
    integrateStep( calcPot, calcStress ); | 
| 218 | 
< | 
       | 
| 219 | 
< | 
    info->currTime += dt; | 
| 220 | 
< | 
    info->setTime(info->currTime); | 
| 213 | 
> | 
    integrateStep(calcPot, calcStress); | 
| 214 | 
  | 
 | 
| 215 | 
< | 
    if( info->setTemp ){ | 
| 216 | 
< | 
      if( info->currTime >= currThermal ){ | 
| 217 | 
< | 
        tStats->velocitize(); | 
| 218 | 
< | 
        currThermal += thermalTime; | 
| 215 | 
> | 
    info->incrTime(dt); | 
| 216 | 
> | 
 | 
| 217 | 
> | 
    if (info->setTemp){ | 
| 218 | 
> | 
      if (info->getTime() >= currThermal){ | 
| 219 | 
> | 
        thermalize(); | 
| 220 | 
> | 
        currThermal += thermalTime; | 
| 221 | 
  | 
      } | 
| 222 | 
  | 
    } | 
| 223 | 
  | 
 | 
| 224 | 
< | 
    if( info->currTime >= currSample ){ | 
| 225 | 
< | 
      dumpOut->writeDump( info->currTime ); | 
| 224 | 
> | 
    if (info->getTime() >= currSample){ | 
| 225 | 
> | 
      dumpOut->writeDump(info->getTime()); | 
| 226 | 
  | 
      currSample += sampleTime; | 
| 227 | 
  | 
    } | 
| 228 | 
  | 
 | 
| 229 | 
< | 
    if( info->currTime >= currStatus ){  | 
| 230 | 
< | 
      statOut->writeStat( info->currTime );  | 
| 229 | 
> | 
    if (info->getTime() >= currStatus){ | 
| 230 | 
> | 
      statOut->writeStat(info->getTime());  | 
| 231 | 
  | 
      calcPot = 0;  | 
| 232 | 
  | 
      calcStress = 0; | 
| 233 | 
  | 
      currStatus += statusTime; | 
| 234 | 
  | 
    }  | 
| 235 | 
+ | 
 | 
| 236 | 
+ | 
    if (info->resetIntegrator){ | 
| 237 | 
+ | 
      if (info->getTime() >= currReset){ | 
| 238 | 
+ | 
        this->resetIntegrator(); | 
| 239 | 
+ | 
        currReset += resetTime; | 
| 240 | 
+ | 
      } | 
| 241 | 
+ | 
    } | 
| 242 | 
  | 
 | 
| 243 | 
  | 
#ifdef IS_MPI | 
| 244 | 
< | 
    strcpy( checkPointMsg,  | 
| 243 | 
< | 
            "successfully took a time step." ); | 
| 244 | 
> | 
    strcpy(checkPointMsg, "successfully took a time step."); | 
| 245 | 
  | 
    MPIcheckPoint(); | 
| 246 | 
  | 
#endif // is_mpi | 
| 246 | 
– | 
 | 
| 247 | 
  | 
  } | 
| 248 | 
  | 
 | 
| 249 | 
< | 
  dumpOut->writeFinal(info->currTime); | 
| 249 | 
> | 
  dumpOut->writeFinal(info->getTime()); | 
| 250 | 
  | 
 | 
| 251 | 
  | 
  delete dumpOut; | 
| 252 | 
  | 
  delete statOut; | 
| 253 | 
  | 
} | 
| 254 | 
  | 
 | 
| 255 | 
< | 
void Integrator::integrateStep( int calcPot, int calcStress ){ | 
| 256 | 
< | 
 | 
| 257 | 
< | 
 | 
| 258 | 
< | 
       | 
| 255 | 
> | 
template<typename T> void Integrator<T>::integrateStep(int calcPot, | 
| 256 | 
> | 
                                                       int calcStress){ | 
| 257 | 
  | 
  // Position full step, and velocity half step | 
| 260 | 
– | 
 | 
| 258 | 
  | 
  preMove(); | 
| 259 | 
+ | 
 | 
| 260 | 
  | 
  moveA(); | 
| 263 | 
– | 
  if( nConstrained ) constrainA(); | 
| 261 | 
  | 
 | 
| 262 | 
< | 
   | 
| 262 | 
> | 
 | 
| 263 | 
> | 
 | 
| 264 | 
> | 
 | 
| 265 | 
  | 
#ifdef IS_MPI | 
| 266 | 
< | 
  strcpy( checkPointMsg, "Succesful moveA\n" ); | 
| 266 | 
> | 
  strcpy(checkPointMsg, "Succesful moveA\n"); | 
| 267 | 
  | 
  MPIcheckPoint(); | 
| 268 | 
  | 
#endif // is_mpi | 
| 270 | 
– | 
   | 
| 269 | 
  | 
 | 
| 270 | 
+ | 
 | 
| 271 | 
  | 
  // calc forces | 
| 272 | 
  | 
 | 
| 273 | 
< | 
  myFF->doForces(calcPot,calcStress); | 
| 273 | 
> | 
  calcForce(calcPot, calcStress); | 
| 274 | 
  | 
 | 
| 275 | 
  | 
#ifdef IS_MPI | 
| 276 | 
< | 
  strcpy( checkPointMsg, "Succesful doForces\n" ); | 
| 276 | 
> | 
  strcpy(checkPointMsg, "Succesful doForces\n"); | 
| 277 | 
  | 
  MPIcheckPoint(); | 
| 278 | 
  | 
#endif // is_mpi | 
| 280 | 
– | 
   | 
| 279 | 
  | 
 | 
| 280 | 
+ | 
 | 
| 281 | 
  | 
  // finish the velocity  half step | 
| 282 | 
< | 
   | 
| 282 | 
> | 
 | 
| 283 | 
  | 
  moveB(); | 
| 284 | 
< | 
  if( nConstrained ) constrainB(); | 
| 285 | 
< | 
   | 
| 284 | 
> | 
 | 
| 285 | 
> | 
 | 
| 286 | 
> | 
 | 
| 287 | 
  | 
#ifdef IS_MPI | 
| 288 | 
< | 
  strcpy( checkPointMsg, "Succesful moveB\n" ); | 
| 288 | 
> | 
  strcpy(checkPointMsg, "Succesful moveB\n"); | 
| 289 | 
  | 
  MPIcheckPoint(); | 
| 290 | 
  | 
#endif // is_mpi | 
| 291 | 
– | 
   | 
| 292 | 
– | 
  | 
| 291 | 
  | 
} | 
| 292 | 
  | 
 | 
| 293 | 
  | 
 | 
| 294 | 
< | 
void Integrator::moveA( void ){ | 
| 297 | 
< | 
   | 
| 294 | 
> | 
template<typename T> void Integrator<T>::moveA(void){ | 
| 295 | 
  | 
  int i, j; | 
| 296 | 
  | 
  DirectionalAtom* dAtom; | 
| 297 | 
  | 
  double Tb[3], ji[3]; | 
| 301 | 
– | 
  double A[3][3], I[3][3]; | 
| 302 | 
– | 
  double angle; | 
| 298 | 
  | 
  double vel[3], pos[3], frc[3]; | 
| 299 | 
  | 
  double mass; | 
| 300 | 
  | 
 | 
| 301 | 
< | 
  for( i=0; i<nAtoms; i++ ){ | 
| 301 | 
> | 
  for (i = 0; i < nAtoms; i++){ | 
| 302 | 
> | 
    atoms[i]->getVel(vel); | 
| 303 | 
> | 
    atoms[i]->getPos(pos); | 
| 304 | 
> | 
    atoms[i]->getFrc(frc); | 
| 305 | 
  | 
 | 
| 308 | 
– | 
    atoms[i]->getVel( vel ); | 
| 309 | 
– | 
    atoms[i]->getPos( pos ); | 
| 310 | 
– | 
    atoms[i]->getFrc( frc ); | 
| 311 | 
– | 
 | 
| 306 | 
  | 
    mass = atoms[i]->getMass(); | 
| 307 | 
  | 
 | 
| 308 | 
< | 
    for (j=0; j < 3; j++) { | 
| 308 | 
> | 
    for (j = 0; j < 3; j++){ | 
| 309 | 
  | 
      // velocity half step | 
| 310 | 
< | 
      vel[j] += ( dt2 * frc[j] / mass ) * eConvert; | 
| 310 | 
> | 
      vel[j] += (dt2 * frc[j] / mass) * eConvert; | 
| 311 | 
  | 
      // position whole step | 
| 312 | 
  | 
      pos[j] += dt * vel[j]; | 
| 313 | 
  | 
    } | 
| 314 | 
  | 
 | 
| 315 | 
< | 
    atoms[i]->setVel( vel ); | 
| 316 | 
< | 
    atoms[i]->setPos( pos ); | 
| 315 | 
> | 
    atoms[i]->setVel(vel); | 
| 316 | 
> | 
    atoms[i]->setPos(pos); | 
| 317 | 
  | 
 | 
| 318 | 
< | 
    if( atoms[i]->isDirectional() ){ | 
| 318 | 
> | 
    if (atoms[i]->isDirectional()){ | 
| 319 | 
> | 
      dAtom = (DirectionalAtom *) atoms[i]; | 
| 320 | 
  | 
 | 
| 326 | 
– | 
      dAtom = (DirectionalAtom *)atoms[i]; | 
| 327 | 
– | 
           | 
| 321 | 
  | 
      // get and convert the torque to body frame | 
| 329 | 
– | 
       | 
| 330 | 
– | 
      dAtom->getTrq( Tb ); | 
| 331 | 
– | 
      dAtom->lab2Body( Tb ); | 
| 322 | 
  | 
 | 
| 323 | 
+ | 
      dAtom->getTrq(Tb); | 
| 324 | 
+ | 
      dAtom->lab2Body(Tb); | 
| 325 | 
+ | 
 | 
| 326 | 
  | 
      // get the angular momentum, and propagate a half step | 
| 327 | 
  | 
 | 
| 328 | 
< | 
      dAtom->getJ( ji ); | 
| 328 | 
> | 
      dAtom->getJ(ji); | 
| 329 | 
  | 
 | 
| 330 | 
< | 
      for (j=0; j < 3; j++)  | 
| 330 | 
> | 
      for (j = 0; j < 3; j++) | 
| 331 | 
  | 
        ji[j] += (dt2 * Tb[j]) * eConvert; | 
| 339 | 
– | 
       | 
| 340 | 
– | 
      // use the angular velocities to propagate the rotation matrix a | 
| 341 | 
– | 
      // full time step | 
| 332 | 
  | 
 | 
| 333 | 
< | 
      dAtom->getA(A); | 
| 344 | 
< | 
      dAtom->getI(I); | 
| 345 | 
< | 
     | 
| 346 | 
< | 
      // rotate about the x-axis       | 
| 347 | 
< | 
      angle = dt2 * ji[0] / I[0][0]; | 
| 348 | 
< | 
      this->rotate( 1, 2, angle, ji, A );  | 
| 333 | 
> | 
      this->rotationPropagation( dAtom, ji ); | 
| 334 | 
  | 
 | 
| 335 | 
< | 
      // rotate about the y-axis | 
| 336 | 
< | 
      angle = dt2 * ji[1] / I[1][1]; | 
| 337 | 
< | 
      this->rotate( 2, 0, angle, ji, A ); | 
| 353 | 
< | 
       | 
| 354 | 
< | 
      // rotate about the z-axis | 
| 355 | 
< | 
      angle = dt * ji[2] / I[2][2]; | 
| 356 | 
< | 
      this->rotate( 0, 1, angle, ji, A); | 
| 357 | 
< | 
       | 
| 358 | 
< | 
      // rotate about the y-axis | 
| 359 | 
< | 
      angle = dt2 * ji[1] / I[1][1]; | 
| 360 | 
< | 
      this->rotate( 2, 0, angle, ji, A ); | 
| 361 | 
< | 
       | 
| 362 | 
< | 
       // rotate about the x-axis | 
| 363 | 
< | 
      angle = dt2 * ji[0] / I[0][0]; | 
| 364 | 
< | 
      this->rotate( 1, 2, angle, ji, A ); | 
| 365 | 
< | 
       | 
| 335 | 
> | 
      dAtom->setJ(ji); | 
| 336 | 
> | 
    } | 
| 337 | 
> | 
  } | 
| 338 | 
  | 
 | 
| 339 | 
< | 
      dAtom->setJ( ji ); | 
| 340 | 
< | 
      dAtom->setA( A  ); | 
| 369 | 
< | 
           | 
| 370 | 
< | 
    }     | 
| 339 | 
> | 
  if (nConstrained){ | 
| 340 | 
> | 
    constrainA(); | 
| 341 | 
  | 
  } | 
| 342 | 
  | 
} | 
| 343 | 
  | 
 | 
| 344 | 
  | 
 | 
| 345 | 
< | 
void Integrator::moveB( void ){ | 
| 345 | 
> | 
template<typename T> void Integrator<T>::moveB(void){ | 
| 346 | 
  | 
  int i, j; | 
| 347 | 
  | 
  DirectionalAtom* dAtom; | 
| 348 | 
  | 
  double Tb[3], ji[3]; | 
| 349 | 
  | 
  double vel[3], frc[3]; | 
| 350 | 
  | 
  double mass; | 
| 351 | 
  | 
 | 
| 352 | 
< | 
  for( i=0; i<nAtoms; i++ ){ | 
| 353 | 
< | 
  | 
| 354 | 
< | 
    atoms[i]->getVel( vel ); | 
| 385 | 
< | 
    atoms[i]->getFrc( frc ); | 
| 352 | 
> | 
  for (i = 0; i < nAtoms; i++){ | 
| 353 | 
> | 
    atoms[i]->getVel(vel); | 
| 354 | 
> | 
    atoms[i]->getFrc(frc); | 
| 355 | 
  | 
 | 
| 356 | 
  | 
    mass = atoms[i]->getMass(); | 
| 357 | 
  | 
 | 
| 358 | 
  | 
    // velocity half step | 
| 359 | 
< | 
    for (j=0; j < 3; j++)  | 
| 360 | 
< | 
      vel[j] += ( dt2 * frc[j] / mass ) * eConvert; | 
| 392 | 
< | 
     | 
| 393 | 
< | 
    atoms[i]->setVel( vel ); | 
| 394 | 
< | 
  | 
| 395 | 
< | 
    if( atoms[i]->isDirectional() ){ | 
| 359 | 
> | 
    for (j = 0; j < 3; j++) | 
| 360 | 
> | 
      vel[j] += (dt2 * frc[j] / mass) * eConvert; | 
| 361 | 
  | 
 | 
| 362 | 
< | 
      dAtom = (DirectionalAtom *)atoms[i]; | 
| 362 | 
> | 
    atoms[i]->setVel(vel); | 
| 363 | 
  | 
 | 
| 364 | 
+ | 
    if (atoms[i]->isDirectional()){ | 
| 365 | 
+ | 
      dAtom = (DirectionalAtom *) atoms[i]; | 
| 366 | 
+ | 
 | 
| 367 | 
  | 
      // get and convert the torque to body frame       | 
| 368 | 
  | 
 | 
| 369 | 
< | 
      dAtom->getTrq( Tb ); | 
| 370 | 
< | 
      dAtom->lab2Body( Tb ); | 
| 369 | 
> | 
      dAtom->getTrq(Tb); | 
| 370 | 
> | 
      dAtom->lab2Body(Tb); | 
| 371 | 
  | 
 | 
| 372 | 
  | 
      // get the angular momentum, and propagate a half step | 
| 373 | 
  | 
 | 
| 374 | 
< | 
      dAtom->getJ( ji ); | 
| 374 | 
> | 
      dAtom->getJ(ji); | 
| 375 | 
  | 
 | 
| 376 | 
< | 
      for (j=0; j < 3; j++)  | 
| 376 | 
> | 
      for (j = 0; j < 3; j++) | 
| 377 | 
  | 
        ji[j] += (dt2 * Tb[j]) * eConvert; | 
| 410 | 
– | 
       | 
| 378 | 
  | 
 | 
| 379 | 
< | 
      dAtom->setJ( ji ); | 
| 379 | 
> | 
 | 
| 380 | 
> | 
      dAtom->setJ(ji); | 
| 381 | 
  | 
    } | 
| 382 | 
  | 
  } | 
| 383 | 
+ | 
 | 
| 384 | 
+ | 
  if (nConstrained){ | 
| 385 | 
+ | 
    constrainB(); | 
| 386 | 
+ | 
  } | 
| 387 | 
  | 
} | 
| 388 | 
  | 
 | 
| 389 | 
< | 
void Integrator::preMove( void ){ | 
| 389 | 
> | 
template<typename T> void Integrator<T>::preMove(void){ | 
| 390 | 
  | 
  int i, j; | 
| 391 | 
  | 
  double pos[3]; | 
| 392 | 
  | 
 | 
| 393 | 
< | 
  if( nConstrained ){ | 
| 393 | 
> | 
  if (nConstrained){ | 
| 394 | 
> | 
    for (i = 0; i < nAtoms; i++){ | 
| 395 | 
> | 
      atoms[i]->getPos(pos); | 
| 396 | 
  | 
 | 
| 397 | 
< | 
    for(i=0; i < nAtoms; i++) { | 
| 398 | 
< | 
  | 
| 425 | 
< | 
      atoms[i]->getPos( pos ); | 
| 426 | 
< | 
 | 
| 427 | 
< | 
      for (j = 0; j < 3; j++) {         | 
| 428 | 
< | 
        oldPos[3*i + j] = pos[j]; | 
| 397 | 
> | 
      for (j = 0; j < 3; j++){ | 
| 398 | 
> | 
        oldPos[3 * i + j] = pos[j]; | 
| 399 | 
  | 
      } | 
| 430 | 
– | 
 | 
| 400 | 
  | 
    } | 
| 401 | 
< | 
  }   | 
| 401 | 
> | 
  } | 
| 402 | 
  | 
} | 
| 403 | 
  | 
 | 
| 404 | 
< | 
void Integrator::constrainA(){ | 
| 405 | 
< | 
 | 
| 437 | 
< | 
  int i,j,k; | 
| 404 | 
> | 
template<typename T> void Integrator<T>::constrainA(){ | 
| 405 | 
> | 
  int i, j; | 
| 406 | 
  | 
  int done; | 
| 407 | 
  | 
  double posA[3], posB[3]; | 
| 408 | 
  | 
  double velA[3], velB[3]; | 
| 417 | 
  | 
  double gab; | 
| 418 | 
  | 
  int iteration; | 
| 419 | 
  | 
 | 
| 420 | 
< | 
  for( i=0; i<nAtoms; i++){     | 
| 420 | 
> | 
  for (i = 0; i < nAtoms; i++){ | 
| 421 | 
  | 
    moving[i] = 0; | 
| 422 | 
< | 
    moved[i]  = 1; | 
| 422 | 
> | 
    moved[i] = 1; | 
| 423 | 
  | 
  } | 
| 424 | 
  | 
 | 
| 425 | 
  | 
  iteration = 0; | 
| 426 | 
  | 
  done = 0; | 
| 427 | 
< | 
  while( !done && (iteration < maxIteration )){ | 
| 460 | 
< | 
 | 
| 427 | 
> | 
  while (!done && (iteration < maxIteration)){ | 
| 428 | 
  | 
    done = 1; | 
| 429 | 
< | 
    for(i=0; i<nConstrained; i++){ | 
| 463 | 
< | 
 | 
| 429 | 
> | 
    for (i = 0; i < nConstrained; i++){ | 
| 430 | 
  | 
      a = constrainedA[i]; | 
| 431 | 
  | 
      b = constrainedB[i]; | 
| 466 | 
– | 
       | 
| 467 | 
– | 
      ax = (a*3) + 0; | 
| 468 | 
– | 
      ay = (a*3) + 1; | 
| 469 | 
– | 
      az = (a*3) + 2; | 
| 432 | 
  | 
 | 
| 433 | 
< | 
      bx = (b*3) + 0; | 
| 434 | 
< | 
      by = (b*3) + 1; | 
| 435 | 
< | 
      bz = (b*3) + 2; | 
| 433 | 
> | 
      ax = (a * 3) + 0; | 
| 434 | 
> | 
      ay = (a * 3) + 1; | 
| 435 | 
> | 
      az = (a * 3) + 2; | 
| 436 | 
  | 
 | 
| 437 | 
< | 
      if( moved[a] || moved[b] ){ | 
| 438 | 
< | 
         | 
| 439 | 
< | 
        atoms[a]->getPos( posA ); | 
| 440 | 
< | 
        atoms[b]->getPos( posB ); | 
| 441 | 
< | 
         | 
| 442 | 
< | 
        for (j = 0; j < 3; j++ )  | 
| 437 | 
> | 
      bx = (b * 3) + 0; | 
| 438 | 
> | 
      by = (b * 3) + 1; | 
| 439 | 
> | 
      bz = (b * 3) + 2; | 
| 440 | 
> | 
 | 
| 441 | 
> | 
      if (moved[a] || moved[b]){ | 
| 442 | 
> | 
        atoms[a]->getPos(posA); | 
| 443 | 
> | 
        atoms[b]->getPos(posB); | 
| 444 | 
> | 
 | 
| 445 | 
> | 
        for (j = 0; j < 3; j++) | 
| 446 | 
  | 
          pab[j] = posA[j] - posB[j]; | 
| 482 | 
– | 
         | 
| 483 | 
– | 
        //periodic boundary condition | 
| 447 | 
  | 
 | 
| 448 | 
< | 
        info->wrapVector( pab ); | 
| 448 | 
> | 
        //periodic boundary condition | 
| 449 | 
  | 
 | 
| 450 | 
< | 
        pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; | 
| 450 | 
> | 
        info->wrapVector(pab); | 
| 451 | 
  | 
 | 
| 452 | 
< | 
        rabsq = constrainedDsqr[i]; | 
| 490 | 
< | 
        diffsq = rabsq - pabsq; | 
| 452 | 
> | 
        pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; | 
| 453 | 
  | 
 | 
| 454 | 
< | 
        // the original rattle code from alan tidesley | 
| 455 | 
< | 
        if (fabs(diffsq) > (tol*rabsq*2)) { | 
| 494 | 
< | 
          rab[0] = oldPos[ax] - oldPos[bx]; | 
| 495 | 
< | 
          rab[1] = oldPos[ay] - oldPos[by]; | 
| 496 | 
< | 
          rab[2] = oldPos[az] - oldPos[bz]; | 
| 454 | 
> | 
        rabsq = constrainedDsqr[i]; | 
| 455 | 
> | 
        diffsq = rabsq - pabsq; | 
| 456 | 
  | 
 | 
| 457 | 
< | 
          info->wrapVector( rab ); | 
| 457 | 
> | 
        // the original rattle code from alan tidesley | 
| 458 | 
> | 
        if (fabs(diffsq) > (tol * rabsq * 2)){ | 
| 459 | 
> | 
          rab[0] = oldPos[ax] - oldPos[bx]; | 
| 460 | 
> | 
          rab[1] = oldPos[ay] - oldPos[by]; | 
| 461 | 
> | 
          rab[2] = oldPos[az] - oldPos[bz]; | 
| 462 | 
  | 
 | 
| 463 | 
< | 
          rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; | 
| 463 | 
> | 
          info->wrapVector(rab); | 
| 464 | 
  | 
 | 
| 465 | 
< | 
          rpabsq = rpab * rpab; | 
| 465 | 
> | 
          rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; | 
| 466 | 
  | 
 | 
| 467 | 
+ | 
          rpabsq = rpab * rpab; | 
| 468 | 
  | 
 | 
| 505 | 
– | 
          if (rpabsq < (rabsq * -diffsq)){ | 
| 469 | 
  | 
 | 
| 470 | 
+ | 
          if (rpabsq < (rabsq * -diffsq)){ | 
| 471 | 
  | 
#ifdef IS_MPI | 
| 472 | 
< | 
            a = atoms[a]->getGlobalIndex(); | 
| 473 | 
< | 
            b = atoms[b]->getGlobalIndex(); | 
| 472 | 
> | 
            a = atoms[a]->getGlobalIndex(); | 
| 473 | 
> | 
            b = atoms[b]->getGlobalIndex(); | 
| 474 | 
  | 
#endif //is_mpi | 
| 475 | 
< | 
            sprintf( painCave.errMsg, | 
| 476 | 
< | 
                     "Constraint failure in constrainA at atom %d and %d.\n", | 
| 477 | 
< | 
                     a, b ); | 
| 478 | 
< | 
            painCave.isFatal = 1; | 
| 479 | 
< | 
            simError(); | 
| 480 | 
< | 
          } | 
| 475 | 
> | 
            sprintf(painCave.errMsg, | 
| 476 | 
> | 
                    "Constraint failure in constrainA at atom %d and %d.\n", a, | 
| 477 | 
> | 
                    b); | 
| 478 | 
> | 
            painCave.isFatal = 1; | 
| 479 | 
> | 
            simError(); | 
| 480 | 
> | 
          } | 
| 481 | 
  | 
 | 
| 482 | 
< | 
          rma = 1.0 / atoms[a]->getMass(); | 
| 483 | 
< | 
          rmb = 1.0 / atoms[b]->getMass(); | 
| 482 | 
> | 
          rma = 1.0 / atoms[a]->getMass(); | 
| 483 | 
> | 
          rmb = 1.0 / atoms[b]->getMass(); | 
| 484 | 
  | 
 | 
| 485 | 
< | 
          gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab ); | 
| 485 | 
> | 
          gab = diffsq / (2.0 * (rma + rmb) * rpab); | 
| 486 | 
  | 
 | 
| 487 | 
  | 
          dx = rab[0] * gab; | 
| 488 | 
  | 
          dy = rab[1] * gab; | 
| 489 | 
  | 
          dz = rab[2] * gab; | 
| 490 | 
  | 
 | 
| 491 | 
< | 
          posA[0] += rma * dx; | 
| 492 | 
< | 
          posA[1] += rma * dy; | 
| 493 | 
< | 
          posA[2] += rma * dz; | 
| 491 | 
> | 
          posA[0] += rma * dx; | 
| 492 | 
> | 
          posA[1] += rma * dy; | 
| 493 | 
> | 
          posA[2] += rma * dz; | 
| 494 | 
  | 
 | 
| 495 | 
< | 
          atoms[a]->setPos( posA ); | 
| 495 | 
> | 
          atoms[a]->setPos(posA); | 
| 496 | 
  | 
 | 
| 497 | 
< | 
          posB[0] -= rmb * dx; | 
| 498 | 
< | 
          posB[1] -= rmb * dy; | 
| 499 | 
< | 
          posB[2] -= rmb * dz; | 
| 497 | 
> | 
          posB[0] -= rmb * dx; | 
| 498 | 
> | 
          posB[1] -= rmb * dy; | 
| 499 | 
> | 
          posB[2] -= rmb * dz; | 
| 500 | 
  | 
 | 
| 501 | 
< | 
          atoms[b]->setPos( posB ); | 
| 501 | 
> | 
          atoms[b]->setPos(posB); | 
| 502 | 
  | 
 | 
| 503 | 
  | 
          dx = dx / dt; | 
| 504 | 
  | 
          dy = dy / dt; | 
| 505 | 
  | 
          dz = dz / dt; | 
| 506 | 
  | 
 | 
| 507 | 
< | 
          atoms[a]->getVel( velA ); | 
| 507 | 
> | 
          atoms[a]->getVel(velA); | 
| 508 | 
  | 
 | 
| 509 | 
< | 
          velA[0] += rma * dx; | 
| 510 | 
< | 
          velA[1] += rma * dy; | 
| 511 | 
< | 
          velA[2] += rma * dz; | 
| 509 | 
> | 
          velA[0] += rma * dx; | 
| 510 | 
> | 
          velA[1] += rma * dy; | 
| 511 | 
> | 
          velA[2] += rma * dz; | 
| 512 | 
  | 
 | 
| 513 | 
< | 
          atoms[a]->setVel( velA ); | 
| 513 | 
> | 
          atoms[a]->setVel(velA); | 
| 514 | 
  | 
 | 
| 515 | 
< | 
          atoms[b]->getVel( velB ); | 
| 515 | 
> | 
          atoms[b]->getVel(velB); | 
| 516 | 
  | 
 | 
| 517 | 
< | 
          velB[0] -= rmb * dx; | 
| 518 | 
< | 
          velB[1] -= rmb * dy; | 
| 519 | 
< | 
          velB[2] -= rmb * dz; | 
| 517 | 
> | 
          velB[0] -= rmb * dx; | 
| 518 | 
> | 
          velB[1] -= rmb * dy; | 
| 519 | 
> | 
          velB[2] -= rmb * dz; | 
| 520 | 
  | 
 | 
| 521 | 
< | 
          atoms[b]->setVel( velB ); | 
| 521 | 
> | 
          atoms[b]->setVel(velB); | 
| 522 | 
  | 
 | 
| 523 | 
< | 
          moving[a] = 1; | 
| 524 | 
< | 
          moving[b] = 1; | 
| 525 | 
< | 
          done = 0; | 
| 526 | 
< | 
        } | 
| 523 | 
> | 
          moving[a] = 1; | 
| 524 | 
> | 
          moving[b] = 1; | 
| 525 | 
> | 
          done = 0; | 
| 526 | 
> | 
        } | 
| 527 | 
  | 
      } | 
| 528 | 
  | 
    } | 
| 529 | 
< | 
     | 
| 530 | 
< | 
    for(i=0; i<nAtoms; i++){ | 
| 567 | 
< | 
       | 
| 529 | 
> | 
 | 
| 530 | 
> | 
    for (i = 0; i < nAtoms; i++){ | 
| 531 | 
  | 
      moved[i] = moving[i]; | 
| 532 | 
  | 
      moving[i] = 0; | 
| 533 | 
  | 
    } | 
| 535 | 
  | 
    iteration++; | 
| 536 | 
  | 
  } | 
| 537 | 
  | 
 | 
| 538 | 
< | 
  if( !done ){ | 
| 539 | 
< | 
 | 
| 540 | 
< | 
    sprintf( painCave.errMsg, | 
| 541 | 
< | 
             "Constraint failure in constrainA, too many iterations: %d\n", | 
| 579 | 
< | 
             iteration ); | 
| 538 | 
> | 
  if (!done){ | 
| 539 | 
> | 
    sprintf(painCave.errMsg, | 
| 540 | 
> | 
            "Constraint failure in constrainA, too many iterations: %d\n", | 
| 541 | 
> | 
            iteration); | 
| 542 | 
  | 
    painCave.isFatal = 1; | 
| 543 | 
  | 
    simError(); | 
| 544 | 
  | 
  } | 
| 545 | 
  | 
 | 
| 546 | 
  | 
} | 
| 547 | 
  | 
 | 
| 548 | 
< | 
void Integrator::constrainB( void ){ | 
| 549 | 
< | 
   | 
| 588 | 
< | 
  int i,j,k; | 
| 548 | 
> | 
template<typename T> void Integrator<T>::constrainB(void){ | 
| 549 | 
> | 
  int i, j; | 
| 550 | 
  | 
  int done; | 
| 551 | 
  | 
  double posA[3], posB[3]; | 
| 552 | 
  | 
  double velA[3], velB[3]; | 
| 555 | 
  | 
  int a, b, ax, ay, az, bx, by, bz; | 
| 556 | 
  | 
  double rma, rmb; | 
| 557 | 
  | 
  double dx, dy, dz; | 
| 558 | 
< | 
  double rabsq, pabsq, rvab; | 
| 598 | 
< | 
  double diffsq; | 
| 558 | 
> | 
  double rvab; | 
| 559 | 
  | 
  double gab; | 
| 560 | 
  | 
  int iteration; | 
| 561 | 
  | 
 | 
| 562 | 
< | 
  for(i=0; i<nAtoms; i++){ | 
| 562 | 
> | 
  for (i = 0; i < nAtoms; i++){ | 
| 563 | 
  | 
    moving[i] = 0; | 
| 564 | 
  | 
    moved[i] = 1; | 
| 565 | 
  | 
  } | 
| 566 | 
  | 
 | 
| 567 | 
  | 
  done = 0; | 
| 568 | 
  | 
  iteration = 0; | 
| 569 | 
< | 
  while( !done && (iteration < maxIteration ) ){ | 
| 610 | 
< | 
 | 
| 569 | 
> | 
  while (!done && (iteration < maxIteration)){ | 
| 570 | 
  | 
    done = 1; | 
| 571 | 
  | 
 | 
| 572 | 
< | 
    for(i=0; i<nConstrained; i++){ | 
| 614 | 
< | 
       | 
| 572 | 
> | 
    for (i = 0; i < nConstrained; i++){ | 
| 573 | 
  | 
      a = constrainedA[i]; | 
| 574 | 
  | 
      b = constrainedB[i]; | 
| 575 | 
  | 
 | 
| 576 | 
< | 
      ax = (a*3) + 0; | 
| 577 | 
< | 
      ay = (a*3) + 1; | 
| 578 | 
< | 
      az = (a*3) + 2; | 
| 576 | 
> | 
      ax = (a * 3) + 0; | 
| 577 | 
> | 
      ay = (a * 3) + 1; | 
| 578 | 
> | 
      az = (a * 3) + 2; | 
| 579 | 
  | 
 | 
| 580 | 
< | 
      bx = (b*3) + 0; | 
| 581 | 
< | 
      by = (b*3) + 1; | 
| 582 | 
< | 
      bz = (b*3) + 2; | 
| 580 | 
> | 
      bx = (b * 3) + 0; | 
| 581 | 
> | 
      by = (b * 3) + 1; | 
| 582 | 
> | 
      bz = (b * 3) + 2; | 
| 583 | 
  | 
 | 
| 584 | 
< | 
      if( moved[a] || moved[b] ){ | 
| 584 | 
> | 
      if (moved[a] || moved[b]){ | 
| 585 | 
> | 
        atoms[a]->getVel(velA); | 
| 586 | 
> | 
        atoms[b]->getVel(velB); | 
| 587 | 
  | 
 | 
| 588 | 
< | 
        atoms[a]->getVel( velA ); | 
| 589 | 
< | 
        atoms[b]->getVel( velB ); | 
| 590 | 
< | 
           | 
| 631 | 
< | 
        vxab = velA[0] - velB[0]; | 
| 632 | 
< | 
        vyab = velA[1] - velB[1]; | 
| 633 | 
< | 
        vzab = velA[2] - velB[2]; | 
| 588 | 
> | 
        vxab = velA[0] - velB[0]; | 
| 589 | 
> | 
        vyab = velA[1] - velB[1]; | 
| 590 | 
> | 
        vzab = velA[2] - velB[2]; | 
| 591 | 
  | 
 | 
| 592 | 
< | 
        atoms[a]->getPos( posA ); | 
| 593 | 
< | 
        atoms[b]->getPos( posB ); | 
| 592 | 
> | 
        atoms[a]->getPos(posA); | 
| 593 | 
> | 
        atoms[b]->getPos(posB); | 
| 594 | 
  | 
 | 
| 595 | 
< | 
        for (j = 0; j < 3; j++)  | 
| 595 | 
> | 
        for (j = 0; j < 3; j++) | 
| 596 | 
  | 
          rab[j] = posA[j] - posB[j]; | 
| 640 | 
– | 
           | 
| 641 | 
– | 
        info->wrapVector( rab ); | 
| 642 | 
– | 
         | 
| 643 | 
– | 
        rma = 1.0 / atoms[a]->getMass(); | 
| 644 | 
– | 
        rmb = 1.0 / atoms[b]->getMass(); | 
| 597 | 
  | 
 | 
| 598 | 
< | 
        rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; | 
| 647 | 
< | 
           | 
| 648 | 
< | 
        gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] ); | 
| 598 | 
> | 
        info->wrapVector(rab); | 
| 599 | 
  | 
 | 
| 600 | 
< | 
        if (fabs(gab) > tol) { | 
| 601 | 
< | 
           | 
| 652 | 
< | 
          dx = rab[0] * gab; | 
| 653 | 
< | 
          dy = rab[1] * gab; | 
| 654 | 
< | 
          dz = rab[2] * gab; | 
| 655 | 
< | 
         | 
| 656 | 
< | 
          velA[0] += rma * dx; | 
| 657 | 
< | 
          velA[1] += rma * dy; | 
| 658 | 
< | 
          velA[2] += rma * dz; | 
| 600 | 
> | 
        rma = 1.0 / atoms[a]->getMass(); | 
| 601 | 
> | 
        rmb = 1.0 / atoms[b]->getMass(); | 
| 602 | 
  | 
 | 
| 603 | 
< | 
          atoms[a]->setVel( velA ); | 
| 603 | 
> | 
        rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; | 
| 604 | 
  | 
 | 
| 605 | 
< | 
          velB[0] -= rmb * dx; | 
| 663 | 
< | 
          velB[1] -= rmb * dy; | 
| 664 | 
< | 
          velB[2] -= rmb * dz; | 
| 605 | 
> | 
        gab = -rvab / ((rma + rmb) * constrainedDsqr[i]); | 
| 606 | 
  | 
 | 
| 607 | 
< | 
          atoms[b]->setVel( velB ); | 
| 608 | 
< | 
           | 
| 609 | 
< | 
          moving[a] = 1; | 
| 610 | 
< | 
          moving[b] = 1; | 
| 611 | 
< | 
          done = 0; | 
| 612 | 
< | 
        } | 
| 607 | 
> | 
        if (fabs(gab) > tol){ | 
| 608 | 
> | 
          dx = rab[0] * gab; | 
| 609 | 
> | 
          dy = rab[1] * gab; | 
| 610 | 
> | 
          dz = rab[2] * gab; | 
| 611 | 
> | 
 | 
| 612 | 
> | 
          velA[0] += rma * dx; | 
| 613 | 
> | 
          velA[1] += rma * dy; | 
| 614 | 
> | 
          velA[2] += rma * dz; | 
| 615 | 
> | 
 | 
| 616 | 
> | 
          atoms[a]->setVel(velA); | 
| 617 | 
> | 
 | 
| 618 | 
> | 
          velB[0] -= rmb * dx; | 
| 619 | 
> | 
          velB[1] -= rmb * dy; | 
| 620 | 
> | 
          velB[2] -= rmb * dz; | 
| 621 | 
> | 
 | 
| 622 | 
> | 
          atoms[b]->setVel(velB); | 
| 623 | 
> | 
 | 
| 624 | 
> | 
          moving[a] = 1; | 
| 625 | 
> | 
          moving[b] = 1; | 
| 626 | 
> | 
          done = 0; | 
| 627 | 
> | 
        } | 
| 628 | 
  | 
      } | 
| 629 | 
  | 
    } | 
| 630 | 
  | 
 | 
| 631 | 
< | 
    for(i=0; i<nAtoms; i++){ | 
| 631 | 
> | 
    for (i = 0; i < nAtoms; i++){ | 
| 632 | 
  | 
      moved[i] = moving[i]; | 
| 633 | 
  | 
      moving[i] = 0; | 
| 634 | 
  | 
    } | 
| 635 | 
< | 
     | 
| 635 | 
> | 
 | 
| 636 | 
  | 
    iteration++; | 
| 637 | 
  | 
  } | 
| 682 | 
– | 
   | 
| 683 | 
– | 
  if( !done ){ | 
| 638 | 
  | 
 | 
| 639 | 
< | 
    | 
| 640 | 
< | 
    sprintf( painCave.errMsg, | 
| 641 | 
< | 
             "Constraint failure in constrainB, too many iterations: %d\n", | 
| 642 | 
< | 
             iteration ); | 
| 639 | 
> | 
  if (!done){ | 
| 640 | 
> | 
    sprintf(painCave.errMsg, | 
| 641 | 
> | 
            "Constraint failure in constrainB, too many iterations: %d\n", | 
| 642 | 
> | 
            iteration); | 
| 643 | 
  | 
    painCave.isFatal = 1; | 
| 644 | 
  | 
    simError(); | 
| 645 | 
< | 
  }  | 
| 692 | 
< | 
 | 
| 645 | 
> | 
  } | 
| 646 | 
  | 
} | 
| 647 | 
  | 
 | 
| 648 | 
< | 
void Integrator::rotate( int axes1, int axes2, double angle, double ji[3],  | 
| 649 | 
< | 
                         double A[3][3] ){ | 
| 648 | 
> | 
template<typename T> void Integrator<T>::rotationPropagation | 
| 649 | 
> | 
( DirectionalAtom* dAtom, double ji[3] ){ | 
| 650 | 
  | 
 | 
| 651 | 
< | 
  int i,j,k; | 
| 651 | 
> | 
  double angle; | 
| 652 | 
> | 
  double A[3][3], I[3][3]; | 
| 653 | 
> | 
 | 
| 654 | 
> | 
  // use the angular velocities to propagate the rotation matrix a | 
| 655 | 
> | 
  // full time step | 
| 656 | 
> | 
 | 
| 657 | 
> | 
  dAtom->getA(A); | 
| 658 | 
> | 
  dAtom->getI(I); | 
| 659 | 
> | 
   | 
| 660 | 
> | 
  // rotate about the x-axis       | 
| 661 | 
> | 
  angle = dt2 * ji[0] / I[0][0]; | 
| 662 | 
> | 
  this->rotate( 1, 2, angle, ji, A );  | 
| 663 | 
> | 
   | 
| 664 | 
> | 
  // rotate about the y-axis | 
| 665 | 
> | 
  angle = dt2 * ji[1] / I[1][1]; | 
| 666 | 
> | 
  this->rotate( 2, 0, angle, ji, A ); | 
| 667 | 
> | 
   | 
| 668 | 
> | 
  // rotate about the z-axis | 
| 669 | 
> | 
  angle = dt * ji[2] / I[2][2]; | 
| 670 | 
> | 
  this->rotate( 0, 1, angle, ji, A); | 
| 671 | 
> | 
   | 
| 672 | 
> | 
  // rotate about the y-axis | 
| 673 | 
> | 
  angle = dt2 * ji[1] / I[1][1]; | 
| 674 | 
> | 
  this->rotate( 2, 0, angle, ji, A ); | 
| 675 | 
> | 
   | 
| 676 | 
> | 
  // rotate about the x-axis | 
| 677 | 
> | 
  angle = dt2 * ji[0] / I[0][0]; | 
| 678 | 
> | 
  this->rotate( 1, 2, angle, ji, A ); | 
| 679 | 
> | 
   | 
| 680 | 
> | 
  dAtom->setA( A  );     | 
| 681 | 
> | 
} | 
| 682 | 
> | 
 | 
| 683 | 
> | 
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, | 
| 684 | 
> | 
                                                double angle, double ji[3], | 
| 685 | 
> | 
                                                double A[3][3]){ | 
| 686 | 
> | 
  int i, j, k; | 
| 687 | 
  | 
  double sinAngle; | 
| 688 | 
  | 
  double cosAngle; | 
| 689 | 
  | 
  double angleSqr; | 
| 695 | 
  | 
 | 
| 696 | 
  | 
  // initialize the tempA | 
| 697 | 
  | 
 | 
| 698 | 
< | 
  for(i=0; i<3; i++){ | 
| 699 | 
< | 
    for(j=0; j<3; j++){ | 
| 698 | 
> | 
  for (i = 0; i < 3; i++){ | 
| 699 | 
> | 
    for (j = 0; j < 3; j++){ | 
| 700 | 
  | 
      tempA[j][i] = A[i][j]; | 
| 701 | 
  | 
    } | 
| 702 | 
  | 
  } | 
| 703 | 
  | 
 | 
| 704 | 
  | 
  // initialize the tempJ | 
| 705 | 
  | 
 | 
| 706 | 
< | 
  for( i=0; i<3; i++) tempJ[i] = ji[i]; | 
| 707 | 
< | 
   | 
| 706 | 
> | 
  for (i = 0; i < 3; i++) | 
| 707 | 
> | 
    tempJ[i] = ji[i]; | 
| 708 | 
> | 
 | 
| 709 | 
  | 
  // initalize rot as a unit matrix | 
| 710 | 
  | 
 | 
| 711 | 
  | 
  rot[0][0] = 1.0; | 
| 715 | 
  | 
  rot[1][0] = 0.0; | 
| 716 | 
  | 
  rot[1][1] = 1.0; | 
| 717 | 
  | 
  rot[1][2] = 0.0; | 
| 718 | 
< | 
   | 
| 718 | 
> | 
 | 
| 719 | 
  | 
  rot[2][0] = 0.0; | 
| 720 | 
  | 
  rot[2][1] = 0.0; | 
| 721 | 
  | 
  rot[2][2] = 1.0; | 
| 722 | 
< | 
   | 
| 722 | 
> | 
 | 
| 723 | 
  | 
  // use a small angle aproximation for sin and cosine | 
| 724 | 
  | 
 | 
| 725 | 
< | 
  angleSqr  = angle * angle; | 
| 725 | 
> | 
  angleSqr = angle * angle; | 
| 726 | 
  | 
  angleSqrOver4 = angleSqr / 4.0; | 
| 727 | 
  | 
  top = 1.0 - angleSqrOver4; | 
| 728 | 
  | 
  bottom = 1.0 + angleSqrOver4; | 
| 735 | 
  | 
 | 
| 736 | 
  | 
  rot[axes1][axes2] = sinAngle; | 
| 737 | 
  | 
  rot[axes2][axes1] = -sinAngle; | 
| 738 | 
< | 
   | 
| 738 | 
> | 
 | 
| 739 | 
  | 
  // rotate the momentum acoording to: ji[] = rot[][] * ji[] | 
| 740 | 
< | 
   | 
| 741 | 
< | 
  for(i=0; i<3; i++){ | 
| 740 | 
> | 
 | 
| 741 | 
> | 
  for (i = 0; i < 3; i++){ | 
| 742 | 
  | 
    ji[i] = 0.0; | 
| 743 | 
< | 
    for(k=0; k<3; k++){ | 
| 743 | 
> | 
    for (k = 0; k < 3; k++){ | 
| 744 | 
  | 
      ji[i] += rot[i][k] * tempJ[k]; | 
| 745 | 
  | 
    } | 
| 746 | 
  | 
  } | 
| 753 | 
  | 
  // calculation as: | 
| 754 | 
  | 
  //                transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) | 
| 755 | 
  | 
 | 
| 756 | 
< | 
  for(i=0; i<3; i++){ | 
| 757 | 
< | 
    for(j=0; j<3; j++){ | 
| 756 | 
> | 
  for (i = 0; i < 3; i++){ | 
| 757 | 
> | 
    for (j = 0; j < 3; j++){ | 
| 758 | 
  | 
      A[j][i] = 0.0; | 
| 759 | 
< | 
      for(k=0; k<3; k++){ | 
| 760 | 
< | 
        A[j][i] += tempA[i][k] * rot[j][k]; | 
| 759 | 
> | 
      for (k = 0; k < 3; k++){ | 
| 760 | 
> | 
        A[j][i] += tempA[i][k] * rot[j][k]; | 
| 761 | 
  | 
      } | 
| 762 | 
  | 
    } | 
| 763 | 
  | 
  } | 
| 764 | 
  | 
} | 
| 765 | 
+ | 
 | 
| 766 | 
+ | 
template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){ | 
| 767 | 
+ | 
  myFF->doForces(calcPot, calcStress); | 
| 768 | 
+ | 
} | 
| 769 | 
+ | 
 | 
| 770 | 
+ | 
template<typename T> void Integrator<T>::thermalize(){ | 
| 771 | 
+ | 
  tStats->velocitize(); | 
| 772 | 
+ | 
} | 
| 773 | 
+ | 
 | 
| 774 | 
+ | 
template<typename T> double Integrator<T>::getConservedQuantity(void){ | 
| 775 | 
+ | 
  return tStats->getTotalE(); | 
| 776 | 
+ | 
} |