| 160 | 
  | 
  double thermalTime = info->thermalTime; | 
| 161 | 
  | 
  double resetTime = info->resetTime; | 
| 162 | 
  | 
 | 
| 163 | 
< | 
 | 
| 163 | 
> | 
  double difference; | 
| 164 | 
  | 
  double currSample; | 
| 165 | 
  | 
  double currThermal; | 
| 166 | 
  | 
  double currStatus; | 
| 179 | 
  | 
 | 
| 180 | 
  | 
  readyCheck(); | 
| 181 | 
  | 
 | 
| 182 | 
+ | 
  // remove center of mass drift velocity (in case we passed in a configuration | 
| 183 | 
+ | 
  // that was drifting | 
| 184 | 
+ | 
  tStats->removeCOMdrift(); | 
| 185 | 
+ | 
 | 
| 186 | 
  | 
  // initialize the forces before the first step | 
| 187 | 
  | 
 | 
| 188 | 
  | 
  calcForce(1, 1); | 
| 185 | 
– | 
 | 
| 186 | 
– | 
  //temp test | 
| 187 | 
– | 
  tStats->getPotential(); | 
| 189 | 
  | 
   | 
| 190 | 
  | 
  if (nConstrained){ | 
| 191 | 
  | 
    preMove(); | 
| 214 | 
  | 
  MPIcheckPoint(); | 
| 215 | 
  | 
#endif // is_mpi | 
| 216 | 
  | 
 | 
| 217 | 
< | 
  while (info->getTime() < runTime){ | 
| 218 | 
< | 
    if ((info->getTime() + dt) >= currStatus){ | 
| 217 | 
> | 
  while (info->getTime() < runTime && !stopIntegrator()){ | 
| 218 | 
> | 
    difference = info->getTime() + dt - currStatus; | 
| 219 | 
> | 
    if (difference > 0 || fabs(difference) < 1e-4 ){ | 
| 220 | 
  | 
      calcPot = 1; | 
| 221 | 
  | 
      calcStress = 1; | 
| 222 | 
  | 
    } | 
| 692 | 
  | 
 | 
| 693 | 
  | 
  double angle; | 
| 694 | 
  | 
  double A[3][3], I[3][3]; | 
| 695 | 
+ | 
  int i, j, k; | 
| 696 | 
  | 
 | 
| 697 | 
  | 
  // use the angular velocities to propagate the rotation matrix a | 
| 698 | 
  | 
  // full time step | 
| 700 | 
  | 
  sd->getA(A); | 
| 701 | 
  | 
  sd->getI(I); | 
| 702 | 
  | 
 | 
| 703 | 
< | 
  // rotate about the x-axis | 
| 704 | 
< | 
  angle = dt2 * ji[0] / I[0][0]; | 
| 705 | 
< | 
  this->rotate( 1, 2, angle, ji, A ); | 
| 703 | 
> | 
  if (sd->isLinear()) { | 
| 704 | 
> | 
    i = sd->linearAxis(); | 
| 705 | 
> | 
    j = (i+1)%3; | 
| 706 | 
> | 
    k = (i+2)%3; | 
| 707 | 
> | 
     | 
| 708 | 
> | 
    angle = dt2 * ji[j] / I[j][j]; | 
| 709 | 
> | 
    this->rotate( k, i, angle, ji, A ); | 
| 710 | 
  | 
 | 
| 711 | 
< | 
  // rotate about the y-axis | 
| 712 | 
< | 
  angle = dt2 * ji[1] / I[1][1]; | 
| 706 | 
< | 
  this->rotate( 2, 0, angle, ji, A ); | 
| 711 | 
> | 
    angle = dt * ji[k] / I[k][k]; | 
| 712 | 
> | 
    this->rotate( i, j, angle, ji, A); | 
| 713 | 
  | 
 | 
| 714 | 
< | 
  // rotate about the z-axis | 
| 715 | 
< | 
  angle = dt * ji[2] / I[2][2]; | 
| 710 | 
< | 
  this->rotate( 0, 1, angle, ji, A); | 
| 714 | 
> | 
    angle = dt2 * ji[j] / I[j][j]; | 
| 715 | 
> | 
    this->rotate( k, i, angle, ji, A ); | 
| 716 | 
  | 
 | 
| 717 | 
< | 
  // rotate about the y-axis | 
| 718 | 
< | 
  angle = dt2 * ji[1] / I[1][1]; | 
| 719 | 
< | 
  this->rotate( 2, 0, angle, ji, A ); | 
| 720 | 
< | 
 | 
| 721 | 
< | 
  // rotate about the x-axis | 
| 722 | 
< | 
  angle = dt2 * ji[0] / I[0][0]; | 
| 723 | 
< | 
  this->rotate( 1, 2, angle, ji, A ); | 
| 724 | 
< | 
 | 
| 717 | 
> | 
  } else { | 
| 718 | 
> | 
    // rotate about the x-axis | 
| 719 | 
> | 
    angle = dt2 * ji[0] / I[0][0]; | 
| 720 | 
> | 
    this->rotate( 1, 2, angle, ji, A ); | 
| 721 | 
> | 
     | 
| 722 | 
> | 
    // rotate about the y-axis | 
| 723 | 
> | 
    angle = dt2 * ji[1] / I[1][1]; | 
| 724 | 
> | 
    this->rotate( 2, 0, angle, ji, A ); | 
| 725 | 
> | 
     | 
| 726 | 
> | 
    // rotate about the z-axis | 
| 727 | 
> | 
    angle = dt * ji[2] / I[2][2]; | 
| 728 | 
> | 
    this->rotate( 0, 1, angle, ji, A); | 
| 729 | 
> | 
     | 
| 730 | 
> | 
    // rotate about the y-axis | 
| 731 | 
> | 
    angle = dt2 * ji[1] / I[1][1]; | 
| 732 | 
> | 
    this->rotate( 2, 0, angle, ji, A ); | 
| 733 | 
> | 
     | 
| 734 | 
> | 
    // rotate about the x-axis | 
| 735 | 
> | 
    angle = dt2 * ji[0] / I[0][0]; | 
| 736 | 
> | 
    this->rotate( 1, 2, angle, ji, A ); | 
| 737 | 
> | 
     | 
| 738 | 
> | 
  } | 
| 739 | 
  | 
  sd->setA( A  ); | 
| 740 | 
  | 
} | 
| 741 | 
  | 
 |