| 31 | 
  | 
  } | 
| 32 | 
  | 
 | 
| 33 | 
  | 
  nAtoms = info->n_atoms; | 
| 34 | 
+ | 
  integrableObjects = info->integrableObjects; | 
| 35 | 
  | 
 | 
| 36 | 
  | 
  // check for constraints | 
| 37 | 
  | 
 | 
| 182 | 
  | 
  // initialize the forces before the first step | 
| 183 | 
  | 
 | 
| 184 | 
  | 
  calcForce(1, 1); | 
| 184 | 
– | 
 | 
| 185 | 
– | 
  //temp test | 
| 186 | 
– | 
  tStats->getPotential(); | 
| 185 | 
  | 
   | 
| 186 | 
  | 
  if (nConstrained){ | 
| 187 | 
  | 
    preMove(); | 
| 210 | 
  | 
  MPIcheckPoint(); | 
| 211 | 
  | 
#endif // is_mpi | 
| 212 | 
  | 
 | 
| 213 | 
< | 
  while (info->getTime() < runTime){ | 
| 213 | 
> | 
  while (info->getTime() < runTime && !stopIntegrator()){ | 
| 214 | 
  | 
    if ((info->getTime() + dt) >= currStatus){ | 
| 215 | 
  | 
      calcPot = 1; | 
| 216 | 
  | 
      calcStress = 1; | 
| 332 | 
  | 
 | 
| 333 | 
  | 
 | 
| 334 | 
  | 
template<typename T> void Integrator<T>::moveA(void){ | 
| 335 | 
< | 
  int i, j; | 
| 335 | 
> | 
  size_t i, j; | 
| 336 | 
  | 
  DirectionalAtom* dAtom; | 
| 337 | 
  | 
  double Tb[3], ji[3]; | 
| 338 | 
  | 
  double vel[3], pos[3], frc[3]; | 
| 339 | 
  | 
  double mass; | 
| 340 | 
< | 
 | 
| 341 | 
< | 
  for (i = 0; i < nAtoms; i++){ | 
| 342 | 
< | 
    atoms[i]->getVel(vel); | 
| 343 | 
< | 
    atoms[i]->getPos(pos); | 
| 344 | 
< | 
    atoms[i]->getFrc(frc); | 
| 345 | 
< | 
 | 
| 346 | 
< | 
    mass = atoms[i]->getMass(); | 
| 340 | 
> | 
  | 
| 341 | 
> | 
  for (i = 0; i < integrableObjects.size() ; i++){ | 
| 342 | 
> | 
    integrableObjects[i]->getVel(vel); | 
| 343 | 
> | 
    integrableObjects[i]->getPos(pos); | 
| 344 | 
> | 
    integrableObjects[i]->getFrc(frc); | 
| 345 | 
> | 
     | 
| 346 | 
> | 
    mass = integrableObjects[i]->getMass(); | 
| 347 | 
  | 
 | 
| 348 | 
  | 
    for (j = 0; j < 3; j++){ | 
| 349 | 
  | 
      // velocity half step | 
| 352 | 
  | 
      pos[j] += dt * vel[j]; | 
| 353 | 
  | 
    } | 
| 354 | 
  | 
 | 
| 355 | 
< | 
    atoms[i]->setVel(vel); | 
| 356 | 
< | 
    atoms[i]->setPos(pos); | 
| 355 | 
> | 
    integrableObjects[i]->setVel(vel); | 
| 356 | 
> | 
    integrableObjects[i]->setPos(pos); | 
| 357 | 
  | 
 | 
| 358 | 
< | 
    if (atoms[i]->isDirectional()){ | 
| 361 | 
< | 
      dAtom = (DirectionalAtom *) atoms[i]; | 
| 358 | 
> | 
    if (integrableObjects[i]->isDirectional()){ | 
| 359 | 
  | 
 | 
| 360 | 
  | 
      // get and convert the torque to body frame | 
| 361 | 
  | 
 | 
| 362 | 
< | 
      dAtom->getTrq(Tb); | 
| 363 | 
< | 
      dAtom->lab2Body(Tb); | 
| 362 | 
> | 
      integrableObjects[i]->getTrq(Tb); | 
| 363 | 
> | 
      integrableObjects[i]->lab2Body(Tb); | 
| 364 | 
  | 
 | 
| 365 | 
  | 
      // get the angular momentum, and propagate a half step | 
| 366 | 
  | 
 | 
| 367 | 
< | 
      dAtom->getJ(ji); | 
| 367 | 
> | 
      integrableObjects[i]->getJ(ji); | 
| 368 | 
  | 
 | 
| 369 | 
  | 
      for (j = 0; j < 3; j++) | 
| 370 | 
  | 
        ji[j] += (dt2 * Tb[j]) * eConvert; | 
| 371 | 
  | 
 | 
| 372 | 
< | 
      this->rotationPropagation( dAtom, ji ); | 
| 372 | 
> | 
      this->rotationPropagation( integrableObjects[i], ji ); | 
| 373 | 
  | 
 | 
| 374 | 
< | 
      dAtom->setJ(ji); | 
| 374 | 
> | 
      integrableObjects[i]->setJ(ji); | 
| 375 | 
  | 
    } | 
| 376 | 
  | 
  } | 
| 377 | 
  | 
 | 
| 383 | 
  | 
 | 
| 384 | 
  | 
template<typename T> void Integrator<T>::moveB(void){ | 
| 385 | 
  | 
  int i, j; | 
| 389 | 
– | 
  DirectionalAtom* dAtom; | 
| 386 | 
  | 
  double Tb[3], ji[3]; | 
| 387 | 
  | 
  double vel[3], frc[3]; | 
| 388 | 
  | 
  double mass; | 
| 389 | 
  | 
 | 
| 390 | 
< | 
  for (i = 0; i < nAtoms; i++){ | 
| 391 | 
< | 
    atoms[i]->getVel(vel); | 
| 392 | 
< | 
    atoms[i]->getFrc(frc); | 
| 390 | 
> | 
  for (i = 0; i < integrableObjects.size(); i++){ | 
| 391 | 
> | 
    integrableObjects[i]->getVel(vel); | 
| 392 | 
> | 
    integrableObjects[i]->getFrc(frc); | 
| 393 | 
  | 
 | 
| 394 | 
< | 
    mass = atoms[i]->getMass(); | 
| 394 | 
> | 
    mass = integrableObjects[i]->getMass(); | 
| 395 | 
  | 
 | 
| 396 | 
  | 
    // velocity half step | 
| 397 | 
  | 
    for (j = 0; j < 3; j++) | 
| 398 | 
  | 
      vel[j] += (dt2 * frc[j] / mass) * eConvert; | 
| 399 | 
  | 
 | 
| 400 | 
< | 
    atoms[i]->setVel(vel); | 
| 400 | 
> | 
    integrableObjects[i]->setVel(vel); | 
| 401 | 
  | 
 | 
| 402 | 
< | 
    if (atoms[i]->isDirectional()){ | 
| 407 | 
< | 
      dAtom = (DirectionalAtom *) atoms[i]; | 
| 402 | 
> | 
    if (integrableObjects[i]->isDirectional()){ | 
| 403 | 
  | 
 | 
| 404 | 
  | 
      // get and convert the torque to body frame | 
| 405 | 
  | 
 | 
| 406 | 
< | 
      dAtom->getTrq(Tb); | 
| 407 | 
< | 
      dAtom->lab2Body(Tb); | 
| 406 | 
> | 
      integrableObjects[i]->getTrq(Tb); | 
| 407 | 
> | 
      integrableObjects[i]->lab2Body(Tb); | 
| 408 | 
  | 
 | 
| 409 | 
  | 
      // get the angular momentum, and propagate a half step | 
| 410 | 
  | 
 | 
| 411 | 
< | 
      dAtom->getJ(ji); | 
| 411 | 
> | 
      integrableObjects[i]->getJ(ji); | 
| 412 | 
  | 
 | 
| 413 | 
  | 
      for (j = 0; j < 3; j++) | 
| 414 | 
  | 
        ji[j] += (dt2 * Tb[j]) * eConvert; | 
| 415 | 
  | 
 | 
| 416 | 
  | 
 | 
| 417 | 
< | 
      dAtom->setJ(ji); | 
| 417 | 
> | 
      integrableObjects[i]->setJ(ji); | 
| 418 | 
  | 
    } | 
| 419 | 
  | 
  } | 
| 420 | 
  | 
 | 
| 683 | 
  | 
} | 
| 684 | 
  | 
 | 
| 685 | 
  | 
template<typename T> void Integrator<T>::rotationPropagation | 
| 686 | 
< | 
( DirectionalAtom* dAtom, double ji[3] ){ | 
| 686 | 
> | 
( StuntDouble* sd, double ji[3] ){ | 
| 687 | 
  | 
 | 
| 688 | 
  | 
  double angle; | 
| 689 | 
  | 
  double A[3][3], I[3][3]; | 
| 690 | 
+ | 
  int i, j, k; | 
| 691 | 
  | 
 | 
| 692 | 
  | 
  // use the angular velocities to propagate the rotation matrix a | 
| 693 | 
  | 
  // full time step | 
| 694 | 
  | 
 | 
| 695 | 
< | 
  dAtom->getA(A); | 
| 696 | 
< | 
  dAtom->getI(I); | 
| 695 | 
> | 
  sd->getA(A); | 
| 696 | 
> | 
  sd->getI(I); | 
| 697 | 
  | 
 | 
| 698 | 
< | 
  // rotate about the x-axis | 
| 699 | 
< | 
  angle = dt2 * ji[0] / I[0][0]; | 
| 700 | 
< | 
  this->rotate( 1, 2, angle, ji, A ); | 
| 698 | 
> | 
  if (sd->isLinear()) { | 
| 699 | 
> | 
    i = sd->linearAxis(); | 
| 700 | 
> | 
    j = (i+1)%3; | 
| 701 | 
> | 
    k = (i+2)%3; | 
| 702 | 
> | 
     | 
| 703 | 
> | 
    angle = dt2 * ji[j] / I[j][j]; | 
| 704 | 
> | 
    this->rotate( k, i, angle, ji, A ); | 
| 705 | 
  | 
 | 
| 706 | 
< | 
  // rotate about the y-axis | 
| 707 | 
< | 
  angle = dt2 * ji[1] / I[1][1]; | 
| 708 | 
< | 
  this->rotate( 2, 0, angle, ji, A ); | 
| 706 | 
> | 
    angle = dt * ji[k] / I[k][k]; | 
| 707 | 
> | 
    this->rotate( i, j, angle, ji, A); | 
| 708 | 
  | 
 | 
| 709 | 
< | 
  // rotate about the z-axis | 
| 710 | 
< | 
  angle = dt * ji[2] / I[2][2]; | 
| 712 | 
< | 
  this->rotate( 0, 1, angle, ji, A); | 
| 709 | 
> | 
    angle = dt2 * ji[j] / I[j][j]; | 
| 710 | 
> | 
    this->rotate( k, i, angle, ji, A ); | 
| 711 | 
  | 
 | 
| 712 | 
< | 
  // rotate about the y-axis | 
| 713 | 
< | 
  angle = dt2 * ji[1] / I[1][1]; | 
| 714 | 
< | 
  this->rotate( 2, 0, angle, ji, A ); | 
| 715 | 
< | 
 | 
| 716 | 
< | 
  // rotate about the x-axis | 
| 717 | 
< | 
  angle = dt2 * ji[0] / I[0][0]; | 
| 718 | 
< | 
  this->rotate( 1, 2, angle, ji, A ); | 
| 719 | 
< | 
 | 
| 720 | 
< | 
  dAtom->setA( A  ); | 
| 712 | 
> | 
  } else { | 
| 713 | 
> | 
    // rotate about the x-axis | 
| 714 | 
> | 
    angle = dt2 * ji[0] / I[0][0]; | 
| 715 | 
> | 
    this->rotate( 1, 2, angle, ji, A ); | 
| 716 | 
> | 
     | 
| 717 | 
> | 
    // rotate about the y-axis | 
| 718 | 
> | 
    angle = dt2 * ji[1] / I[1][1]; | 
| 719 | 
> | 
    this->rotate( 2, 0, angle, ji, A ); | 
| 720 | 
> | 
     | 
| 721 | 
> | 
    // rotate about the z-axis | 
| 722 | 
> | 
    angle = dt * ji[2] / I[2][2]; | 
| 723 | 
> | 
    this->rotate( 0, 1, angle, ji, A); | 
| 724 | 
> | 
     | 
| 725 | 
> | 
    // rotate about the y-axis | 
| 726 | 
> | 
    angle = dt2 * ji[1] / I[1][1]; | 
| 727 | 
> | 
    this->rotate( 2, 0, angle, ji, A ); | 
| 728 | 
> | 
     | 
| 729 | 
> | 
    // rotate about the x-axis | 
| 730 | 
> | 
    angle = dt2 * ji[0] / I[0][0]; | 
| 731 | 
> | 
    this->rotate( 1, 2, angle, ji, A ); | 
| 732 | 
> | 
     | 
| 733 | 
> | 
  } | 
| 734 | 
> | 
  sd->setA( A  ); | 
| 735 | 
  | 
} | 
| 736 | 
  | 
 | 
| 737 | 
  | 
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |