| 1 | #include <iostream> | 
| 2 | #include <cstdlib> | 
| 3 | #include <cmath> | 
| 4 |  | 
| 5 | #ifdef IS_MPI | 
| 6 | #include "mpiSimulation.hpp" | 
| 7 | #include <unistd.h> | 
| 8 | #endif //is_mpi | 
| 9 |  | 
| 10 | #include "Integrator.hpp" | 
| 11 | #include "simError.h" | 
| 12 |  | 
| 13 |  | 
| 14 | Integrator::Integrator( SimInfo *theInfo, ForceFields* the_ff ){ | 
| 15 |  | 
| 16 | info = theInfo; | 
| 17 | myFF = the_ff; | 
| 18 | isFirst = 1; | 
| 19 |  | 
| 20 | molecules = info->molecules; | 
| 21 | nMols = info->n_mol; | 
| 22 |  | 
| 23 | // give a little love back to the SimInfo object | 
| 24 |  | 
| 25 | if( info->the_integrator != NULL ) delete info->the_integrator; | 
| 26 | info->the_integrator = this; | 
| 27 |  | 
| 28 | nAtoms = info->n_atoms; | 
| 29 |  | 
| 30 | // check for constraints | 
| 31 |  | 
| 32 | constrainedA    = NULL; | 
| 33 | constrainedB    = NULL; | 
| 34 | constrainedDsqr = NULL; | 
| 35 | moving          = NULL; | 
| 36 | moved           = NULL; | 
| 37 | oldPos          = NULL; | 
| 38 |  | 
| 39 | nConstrained = 0; | 
| 40 |  | 
| 41 | checkConstraints(); | 
| 42 | } | 
| 43 |  | 
| 44 | Integrator::~Integrator() { | 
| 45 |  | 
| 46 | if( nConstrained ){ | 
| 47 | delete[] constrainedA; | 
| 48 | delete[] constrainedB; | 
| 49 | delete[] constrainedDsqr; | 
| 50 | delete[] moving; | 
| 51 | delete[] moved; | 
| 52 | delete[] oldPos; | 
| 53 | } | 
| 54 |  | 
| 55 | } | 
| 56 |  | 
| 57 | void Integrator::checkConstraints( void ){ | 
| 58 |  | 
| 59 |  | 
| 60 | isConstrained = 0; | 
| 61 |  | 
| 62 | Constraint *temp_con; | 
| 63 | Constraint *dummy_plug; | 
| 64 | temp_con = new Constraint[info->n_SRI]; | 
| 65 | nConstrained = 0; | 
| 66 | int constrained = 0; | 
| 67 |  | 
| 68 | SRI** theArray; | 
| 69 | for(int i = 0; i < nMols; i++){ | 
| 70 |  | 
| 71 | theArray = (SRI**) molecules[i].getMyBonds(); | 
| 72 | for(int j=0; j<molecules[i].getNBonds(); j++){ | 
| 73 |  | 
| 74 | constrained = theArray[j]->is_constrained(); | 
| 75 |  | 
| 76 | if(constrained){ | 
| 77 |  | 
| 78 | dummy_plug = theArray[j]->get_constraint(); | 
| 79 | temp_con[nConstrained].set_a( dummy_plug->get_a() ); | 
| 80 | temp_con[nConstrained].set_b( dummy_plug->get_b() ); | 
| 81 | temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); | 
| 82 |  | 
| 83 | nConstrained++; | 
| 84 | constrained = 0; | 
| 85 | } | 
| 86 | } | 
| 87 |  | 
| 88 | theArray = (SRI**) molecules[i].getMyBends(); | 
| 89 | for(int j=0; j<molecules[i].getNBends(); j++){ | 
| 90 |  | 
| 91 | constrained = theArray[j]->is_constrained(); | 
| 92 |  | 
| 93 | if(constrained){ | 
| 94 |  | 
| 95 | dummy_plug = theArray[j]->get_constraint(); | 
| 96 | temp_con[nConstrained].set_a( dummy_plug->get_a() ); | 
| 97 | temp_con[nConstrained].set_b( dummy_plug->get_b() ); | 
| 98 | temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); | 
| 99 |  | 
| 100 | nConstrained++; | 
| 101 | constrained = 0; | 
| 102 | } | 
| 103 | } | 
| 104 |  | 
| 105 | theArray = (SRI**) molecules[i].getMyTorsions(); | 
| 106 | for(int j=0; j<molecules[i].getNTorsions(); j++){ | 
| 107 |  | 
| 108 | constrained = theArray[j]->is_constrained(); | 
| 109 |  | 
| 110 | if(constrained){ | 
| 111 |  | 
| 112 | dummy_plug = theArray[j]->get_constraint(); | 
| 113 | temp_con[nConstrained].set_a( dummy_plug->get_a() ); | 
| 114 | temp_con[nConstrained].set_b( dummy_plug->get_b() ); | 
| 115 | temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); | 
| 116 |  | 
| 117 | nConstrained++; | 
| 118 | constrained = 0; | 
| 119 | } | 
| 120 | } | 
| 121 | } | 
| 122 |  | 
| 123 | if(nConstrained > 0){ | 
| 124 |  | 
| 125 | isConstrained = 1; | 
| 126 |  | 
| 127 | if(constrainedA != NULL )    delete[] constrainedA; | 
| 128 | if(constrainedB != NULL )    delete[] constrainedB; | 
| 129 | if(constrainedDsqr != NULL ) delete[] constrainedDsqr; | 
| 130 |  | 
| 131 | constrainedA =    new int[nConstrained]; | 
| 132 | constrainedB =    new int[nConstrained]; | 
| 133 | constrainedDsqr = new double[nConstrained]; | 
| 134 |  | 
| 135 | for( int i = 0; i < nConstrained; i++){ | 
| 136 |  | 
| 137 | constrainedA[i] = temp_con[i].get_a(); | 
| 138 | constrainedB[i] = temp_con[i].get_b(); | 
| 139 | constrainedDsqr[i] = temp_con[i].get_dsqr(); | 
| 140 |  | 
| 141 | } | 
| 142 |  | 
| 143 |  | 
| 144 | // save oldAtoms to check for lode balanceing later on. | 
| 145 |  | 
| 146 | oldAtoms = nAtoms; | 
| 147 |  | 
| 148 | moving = new int[nAtoms]; | 
| 149 | moved  = new int[nAtoms]; | 
| 150 |  | 
| 151 | oldPos = new double[nAtoms*3]; | 
| 152 | } | 
| 153 |  | 
| 154 | delete[] temp_con; | 
| 155 | } | 
| 156 |  | 
| 157 |  | 
| 158 | void Integrator::integrate( void ){ | 
| 159 |  | 
| 160 | int i, j;                         // loop counters | 
| 161 |  | 
| 162 | double runTime     = info->run_time; | 
| 163 | double sampleTime  = info->sampleTime; | 
| 164 | double statusTime  = info->statusTime; | 
| 165 | double thermalTime = info->thermalTime; | 
| 166 |  | 
| 167 | double currSample; | 
| 168 | double currThermal; | 
| 169 | double currStatus; | 
| 170 | double currTime; | 
| 171 |  | 
| 172 | int calcPot, calcStress; | 
| 173 | int isError; | 
| 174 |  | 
| 175 |  | 
| 176 |  | 
| 177 | tStats   = new Thermo( info ); | 
| 178 | statOut  = new StatWriter( info ); | 
| 179 | dumpOut  = new DumpWriter( info ); | 
| 180 |  | 
| 181 | atoms = info->atoms; | 
| 182 | DirectionalAtom* dAtom; | 
| 183 |  | 
| 184 | dt = info->dt; | 
| 185 | dt2 = 0.5 * dt; | 
| 186 |  | 
| 187 | // initialize the forces before the first step | 
| 188 |  | 
| 189 | myFF->doForces(1,1); | 
| 190 |  | 
| 191 | if( info->setTemp ){ | 
| 192 |  | 
| 193 | tStats->velocitize(); | 
| 194 | } | 
| 195 |  | 
| 196 | dumpOut->writeDump( 0.0 ); | 
| 197 | statOut->writeStat( 0.0 ); | 
| 198 |  | 
| 199 | calcPot     = 0; | 
| 200 | calcStress  = 0; | 
| 201 | currSample  = sampleTime; | 
| 202 | currThermal = thermalTime; | 
| 203 | currStatus  = statusTime; | 
| 204 | currTime    = 0.0;; | 
| 205 |  | 
| 206 |  | 
| 207 | readyCheck(); | 
| 208 |  | 
| 209 | #ifdef IS_MPI | 
| 210 | strcpy( checkPointMsg, | 
| 211 | "The integrator is ready to go." ); | 
| 212 | MPIcheckPoint(); | 
| 213 | #endif // is_mpi | 
| 214 |  | 
| 215 |  | 
| 216 | pos  = Atom::getPosArray(); | 
| 217 | vel  = Atom::getVelArray(); | 
| 218 | frc  = Atom::getFrcArray(); | 
| 219 | trq  = Atom::getTrqArray(); | 
| 220 | Amat = Atom::getAmatArray(); | 
| 221 |  | 
| 222 | while( currTime < runTime ){ | 
| 223 |  | 
| 224 | if( (currTime+dt) >= currStatus ){ | 
| 225 | calcPot = 1; | 
| 226 | calcStress = 1; | 
| 227 | } | 
| 228 |  | 
| 229 | integrateStep( calcPot, calcStress ); | 
| 230 |  | 
| 231 | currTime += dt; | 
| 232 |  | 
| 233 | if( info->setTemp ){ | 
| 234 | if( currTime >= currThermal ){ | 
| 235 | tStats->velocitize(); | 
| 236 | currThermal += thermalTime; | 
| 237 | } | 
| 238 | } | 
| 239 |  | 
| 240 | if( currTime >= currSample ){ | 
| 241 | dumpOut->writeDump( currTime ); | 
| 242 | currSample += sampleTime; | 
| 243 | } | 
| 244 |  | 
| 245 | if( currTime >= currStatus ){ | 
| 246 | statOut->writeStat( currTime ); | 
| 247 | calcPot = 0; | 
| 248 | calcStress = 0; | 
| 249 | currStatus += statusTime; | 
| 250 | } | 
| 251 |  | 
| 252 | #ifdef IS_MPI | 
| 253 | strcpy( checkPointMsg, | 
| 254 | "successfully took a time step." ); | 
| 255 | MPIcheckPoint(); | 
| 256 | #endif // is_mpi | 
| 257 |  | 
| 258 | } | 
| 259 |  | 
| 260 | dumpOut->writeFinal(); | 
| 261 |  | 
| 262 | delete dumpOut; | 
| 263 | delete statOut; | 
| 264 | } | 
| 265 |  | 
| 266 | void Integrator::integrateStep( int calcPot, int calcStress ){ | 
| 267 |  | 
| 268 |  | 
| 269 |  | 
| 270 | // Position full step, and velocity half step | 
| 271 |  | 
| 272 | preMove(); | 
| 273 | moveA(); | 
| 274 | if( nConstrained ) constrainA(); | 
| 275 |  | 
| 276 | // calc forces | 
| 277 |  | 
| 278 | myFF->doForces(calcPot,calcStress); | 
| 279 |  | 
| 280 | // finish the velocity  half step | 
| 281 |  | 
| 282 | moveB(); | 
| 283 | if( nConstrained ) constrainB(); | 
| 284 |  | 
| 285 | } | 
| 286 |  | 
| 287 |  | 
| 288 | void Integrator::moveA( void ){ | 
| 289 |  | 
| 290 | int i,j,k; | 
| 291 | int atomIndex, aMatIndex; | 
| 292 | DirectionalAtom* dAtom; | 
| 293 | double Tb[3]; | 
| 294 | double ji[3]; | 
| 295 | double angle; | 
| 296 |  | 
| 297 |  | 
| 298 |  | 
| 299 | for( i=0; i<nAtoms; i++ ){ | 
| 300 | atomIndex = i * 3; | 
| 301 | aMatIndex = i * 9; | 
| 302 |  | 
| 303 | // velocity half step | 
| 304 | for( j=atomIndex; j<(atomIndex+3); j++ ) | 
| 305 | vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; | 
| 306 |  | 
| 307 | // position whole step | 
| 308 | for( j=atomIndex; j<(atomIndex+3); j++ ) pos[j] += dt * vel[j]; | 
| 309 |  | 
| 310 | if( atoms[i]->isDirectional() ){ | 
| 311 |  | 
| 312 | dAtom = (DirectionalAtom *)atoms[i]; | 
| 313 |  | 
| 314 | // get and convert the torque to body frame | 
| 315 |  | 
| 316 | Tb[0] = dAtom->getTx(); | 
| 317 | Tb[1] = dAtom->getTy(); | 
| 318 | Tb[2] = dAtom->getTz(); | 
| 319 |  | 
| 320 | dAtom->lab2Body( Tb ); | 
| 321 |  | 
| 322 | // get the angular momentum, and propagate a half step | 
| 323 |  | 
| 324 | ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; | 
| 325 | ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; | 
| 326 | ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; | 
| 327 |  | 
| 328 | // use the angular velocities to propagate the rotation matrix a | 
| 329 | // full time step | 
| 330 |  | 
| 331 | // rotate about the x-axis | 
| 332 | angle = dt2 * ji[0] / dAtom->getIxx(); | 
| 333 | this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); | 
| 334 |  | 
| 335 | // rotate about the y-axis | 
| 336 | angle = dt2 * ji[1] / dAtom->getIyy(); | 
| 337 | this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); | 
| 338 |  | 
| 339 | // rotate about the z-axis | 
| 340 | angle = dt * ji[2] / dAtom->getIzz(); | 
| 341 | this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); | 
| 342 |  | 
| 343 | // rotate about the y-axis | 
| 344 | angle = dt2 * ji[1] / dAtom->getIyy(); | 
| 345 | this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); | 
| 346 |  | 
| 347 | // rotate about the x-axis | 
| 348 | angle = dt2 * ji[0] / dAtom->getIxx(); | 
| 349 | this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); | 
| 350 |  | 
| 351 | dAtom->setJx( ji[0] ); | 
| 352 | dAtom->setJy( ji[1] ); | 
| 353 | dAtom->setJz( ji[2] ); | 
| 354 | } | 
| 355 |  | 
| 356 | } | 
| 357 | } | 
| 358 |  | 
| 359 |  | 
| 360 | void Integrator::moveB( void ){ | 
| 361 | int i,j,k; | 
| 362 | int atomIndex; | 
| 363 | DirectionalAtom* dAtom; | 
| 364 | double Tb[3]; | 
| 365 | double ji[3]; | 
| 366 |  | 
| 367 | for( i=0; i<nAtoms; i++ ){ | 
| 368 | atomIndex = i * 3; | 
| 369 |  | 
| 370 | // velocity half step | 
| 371 | for( j=atomIndex; j<(atomIndex+3); j++ ) | 
| 372 | vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; | 
| 373 |  | 
| 374 | if( atoms[i]->isDirectional() ){ | 
| 375 |  | 
| 376 | dAtom = (DirectionalAtom *)atoms[i]; | 
| 377 |  | 
| 378 | // get and convert the torque to body frame | 
| 379 |  | 
| 380 | Tb[0] = dAtom->getTx(); | 
| 381 | Tb[1] = dAtom->getTy(); | 
| 382 | Tb[2] = dAtom->getTz(); | 
| 383 |  | 
| 384 | dAtom->lab2Body( Tb ); | 
| 385 |  | 
| 386 | // get the angular momentum, and complete the angular momentum | 
| 387 | // half step | 
| 388 |  | 
| 389 | ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; | 
| 390 | ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; | 
| 391 | ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; | 
| 392 |  | 
| 393 | dAtom->setJx( ji[0] ); | 
| 394 | dAtom->setJy( ji[1] ); | 
| 395 | dAtom->setJz( ji[2] ); | 
| 396 | } | 
| 397 | } | 
| 398 |  | 
| 399 | } | 
| 400 |  | 
| 401 | void Integrator::preMove( void ){ | 
| 402 | int i; | 
| 403 |  | 
| 404 | if( nConstrained ){ | 
| 405 |  | 
| 406 | for(i=0; i<(nAtoms*3); i++) oldPos[i] = pos[i]; | 
| 407 | } | 
| 408 | } | 
| 409 |  | 
| 410 | void Integrator::constrainA(){ | 
| 411 |  | 
| 412 | int i,j,k; | 
| 413 | int done; | 
| 414 | double pxab, pyab, pzab; | 
| 415 | double rxab, ryab, rzab; | 
| 416 | int a, b, ax, ay, az, bx, by, bz; | 
| 417 | double rma, rmb; | 
| 418 | double dx, dy, dz; | 
| 419 | double rpab; | 
| 420 | double rabsq, pabsq, rpabsq; | 
| 421 | double diffsq; | 
| 422 | double gab; | 
| 423 | int iteration; | 
| 424 |  | 
| 425 |  | 
| 426 |  | 
| 427 | for( i=0; i<nAtoms; i++){ | 
| 428 |  | 
| 429 | moving[i] = 0; | 
| 430 | moved[i]  = 1; | 
| 431 | } | 
| 432 |  | 
| 433 | iteration = 0; | 
| 434 | done = 0; | 
| 435 | while( !done && (iteration < maxIteration )){ | 
| 436 |  | 
| 437 | done = 1; | 
| 438 | for(i=0; i<nConstrained; i++){ | 
| 439 |  | 
| 440 | a = constrainedA[i]; | 
| 441 | b = constrainedB[i]; | 
| 442 |  | 
| 443 | ax = (a*3) + 0; | 
| 444 | ay = (a*3) + 1; | 
| 445 | az = (a*3) + 2; | 
| 446 |  | 
| 447 | bx = (b*3) + 0; | 
| 448 | by = (b*3) + 1; | 
| 449 | bz = (b*3) + 2; | 
| 450 |  | 
| 451 | if( moved[a] || moved[b] ){ | 
| 452 |  | 
| 453 | pxab = pos[ax] - pos[bx]; | 
| 454 | pyab = pos[ay] - pos[by]; | 
| 455 | pzab = pos[az] - pos[bz]; | 
| 456 |  | 
| 457 | //periodic boundary condition | 
| 458 | pxab = pxab - info->box_x * copysign(1, pxab) | 
| 459 | * (int)( fabs(pxab / info->box_x) + 0.5); | 
| 460 | pyab = pyab - info->box_y * copysign(1, pyab) | 
| 461 | * (int)( fabs(pyab / info->box_y) + 0.5); | 
| 462 | pzab = pzab - info->box_z * copysign(1, pzab) | 
| 463 | * (int)( fabs(pzab / info->box_z) + 0.5); | 
| 464 |  | 
| 465 | pabsq = pxab * pxab + pyab * pyab + pzab * pzab; | 
| 466 |  | 
| 467 | rabsq = constrainedDsqr[i]; | 
| 468 | diffsq = rabsq - pabsq; | 
| 469 |  | 
| 470 | // the original rattle code from alan tidesley | 
| 471 | if (fabs(diffsq) > (tol*rabsq*2)) { | 
| 472 | rxab = oldPos[ax] - oldPos[bx]; | 
| 473 | ryab = oldPos[ay] - oldPos[by]; | 
| 474 | rzab = oldPos[az] - oldPos[bz]; | 
| 475 |  | 
| 476 | rxab = rxab - info->box_x * copysign(1, rxab) | 
| 477 | * (int)( fabs(rxab / info->box_x) + 0.5); | 
| 478 | ryab = ryab - info->box_y * copysign(1, ryab) | 
| 479 | * (int)( fabs(ryab / info->box_y) + 0.5); | 
| 480 | rzab = rzab - info->box_z * copysign(1, rzab) | 
| 481 | * (int)( fabs(rzab / info->box_z) + 0.5); | 
| 482 |  | 
| 483 | rpab = rxab * pxab + ryab * pyab + rzab * pzab; | 
| 484 |  | 
| 485 | rpabsq = rpab * rpab; | 
| 486 |  | 
| 487 |  | 
| 488 | if (rpabsq < (rabsq * -diffsq)){ | 
| 489 |  | 
| 490 | #ifdef IS_MPI | 
| 491 | a = atoms[a]->getGlobalIndex(); | 
| 492 | b = atoms[b]->getGlobalIndex(); | 
| 493 | #endif //is_mpi | 
| 494 | sprintf( painCave.errMsg, | 
| 495 | "Constraint failure in constrainA at atom %d and %d.\n", | 
| 496 | a, b ); | 
| 497 | painCave.isFatal = 1; | 
| 498 | simError(); | 
| 499 | } | 
| 500 |  | 
| 501 | rma = 1.0 / atoms[a]->getMass(); | 
| 502 | rmb = 1.0 / atoms[b]->getMass(); | 
| 503 |  | 
| 504 | gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab ); | 
| 505 |  | 
| 506 | dx = rxab * gab; | 
| 507 | dy = ryab * gab; | 
| 508 | dz = rzab * gab; | 
| 509 |  | 
| 510 | pos[ax] += rma * dx; | 
| 511 | pos[ay] += rma * dy; | 
| 512 | pos[az] += rma * dz; | 
| 513 |  | 
| 514 | pos[bx] -= rmb * dx; | 
| 515 | pos[by] -= rmb * dy; | 
| 516 | pos[bz] -= rmb * dz; | 
| 517 |  | 
| 518 | dx = dx / dt; | 
| 519 | dy = dy / dt; | 
| 520 | dz = dz / dt; | 
| 521 |  | 
| 522 | vel[ax] += rma * dx; | 
| 523 | vel[ay] += rma * dy; | 
| 524 | vel[az] += rma * dz; | 
| 525 |  | 
| 526 | vel[bx] -= rmb * dx; | 
| 527 | vel[by] -= rmb * dy; | 
| 528 | vel[bz] -= rmb * dz; | 
| 529 |  | 
| 530 | moving[a] = 1; | 
| 531 | moving[b] = 1; | 
| 532 | done = 0; | 
| 533 | } | 
| 534 | } | 
| 535 | } | 
| 536 |  | 
| 537 | for(i=0; i<nAtoms; i++){ | 
| 538 |  | 
| 539 | moved[i] = moving[i]; | 
| 540 | moving[i] = 0; | 
| 541 | } | 
| 542 |  | 
| 543 | iteration++; | 
| 544 | } | 
| 545 |  | 
| 546 | if( !done ){ | 
| 547 |  | 
| 548 | sprintf( painCave.errMsg, | 
| 549 | "Constraint failure in constrainA, too many iterations: %d\n", | 
| 550 | iteration ); | 
| 551 | painCave.isFatal = 1; | 
| 552 | simError(); | 
| 553 | } | 
| 554 |  | 
| 555 | } | 
| 556 |  | 
| 557 | void Integrator::constrainB( void ){ | 
| 558 |  | 
| 559 | int i,j,k; | 
| 560 | int done; | 
| 561 | double vxab, vyab, vzab; | 
| 562 | double rxab, ryab, rzab; | 
| 563 | int a, b, ax, ay, az, bx, by, bz; | 
| 564 | double rma, rmb; | 
| 565 | double dx, dy, dz; | 
| 566 | double rabsq, pabsq, rvab; | 
| 567 | double diffsq; | 
| 568 | double gab; | 
| 569 | int iteration; | 
| 570 |  | 
| 571 | for(i=0; i<nAtoms; i++){ | 
| 572 | moving[i] = 0; | 
| 573 | moved[i] = 1; | 
| 574 | } | 
| 575 |  | 
| 576 | done = 0; | 
| 577 | iteration = 0; | 
| 578 | while( !done && (iteration < maxIteration ) ){ | 
| 579 |  | 
| 580 | done = 1; | 
| 581 |  | 
| 582 | for(i=0; i<nConstrained; i++){ | 
| 583 |  | 
| 584 | a = constrainedA[i]; | 
| 585 | b = constrainedB[i]; | 
| 586 |  | 
| 587 | ax = (a*3) + 0; | 
| 588 | ay = (a*3) + 1; | 
| 589 | az = (a*3) + 2; | 
| 590 |  | 
| 591 | bx = (b*3) + 0; | 
| 592 | by = (b*3) + 1; | 
| 593 | bz = (b*3) + 2; | 
| 594 |  | 
| 595 | if( moved[a] || moved[b] ){ | 
| 596 |  | 
| 597 | vxab = vel[ax] - vel[bx]; | 
| 598 | vyab = vel[ay] - vel[by]; | 
| 599 | vzab = vel[az] - vel[bz]; | 
| 600 |  | 
| 601 | rxab = pos[ax] - pos[bx]; | 
| 602 | ryab = pos[ay] - pos[by]; | 
| 603 | rzab = pos[az] - pos[bz]; | 
| 604 |  | 
| 605 |  | 
| 606 | rxab = rxab - info->box_x * copysign(1, rxab) | 
| 607 | * (int)( fabs(rxab / info->box_x) + 0.5); | 
| 608 | ryab = ryab - info->box_y * copysign(1, ryab) | 
| 609 | * (int)( fabs(ryab / info->box_y) + 0.5); | 
| 610 | rzab = rzab - info->box_z * copysign(1, rzab) | 
| 611 | * (int)( fabs(rzab / info->box_z) + 0.5); | 
| 612 |  | 
| 613 | rma = 1.0 / atoms[a]->getMass(); | 
| 614 | rmb = 1.0 / atoms[b]->getMass(); | 
| 615 |  | 
| 616 | rvab = rxab * vxab + ryab * vyab + rzab * vzab; | 
| 617 |  | 
| 618 | gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] ); | 
| 619 |  | 
| 620 | if (fabs(gab) > tol) { | 
| 621 |  | 
| 622 | dx = rxab * gab; | 
| 623 | dy = ryab * gab; | 
| 624 | dz = rzab * gab; | 
| 625 |  | 
| 626 | vel[ax] += rma * dx; | 
| 627 | vel[ay] += rma * dy; | 
| 628 | vel[az] += rma * dz; | 
| 629 |  | 
| 630 | vel[bx] -= rmb * dx; | 
| 631 | vel[by] -= rmb * dy; | 
| 632 | vel[bz] -= rmb * dz; | 
| 633 |  | 
| 634 | moving[a] = 1; | 
| 635 | moving[b] = 1; | 
| 636 | done = 0; | 
| 637 | } | 
| 638 | } | 
| 639 | } | 
| 640 |  | 
| 641 | for(i=0; i<nAtoms; i++){ | 
| 642 | moved[i] = moving[i]; | 
| 643 | moving[i] = 0; | 
| 644 | } | 
| 645 |  | 
| 646 | iteration++; | 
| 647 | } | 
| 648 |  | 
| 649 | if( !done ){ | 
| 650 |  | 
| 651 |  | 
| 652 | sprintf( painCave.errMsg, | 
| 653 | "Constraint failure in constrainB, too many iterations: %d\n", | 
| 654 | iteration ); | 
| 655 | painCave.isFatal = 1; | 
| 656 | simError(); | 
| 657 | } | 
| 658 |  | 
| 659 | } | 
| 660 |  | 
| 661 |  | 
| 662 |  | 
| 663 |  | 
| 664 |  | 
| 665 |  | 
| 666 |  | 
| 667 | void Integrator::rotate( int axes1, int axes2, double angle, double ji[3], | 
| 668 | double A[9] ){ | 
| 669 |  | 
| 670 | int i,j,k; | 
| 671 | double sinAngle; | 
| 672 | double cosAngle; | 
| 673 | double angleSqr; | 
| 674 | double angleSqrOver4; | 
| 675 | double top, bottom; | 
| 676 | double rot[3][3]; | 
| 677 | double tempA[3][3]; | 
| 678 | double tempJ[3]; | 
| 679 |  | 
| 680 | // initialize the tempA | 
| 681 |  | 
| 682 | for(i=0; i<3; i++){ | 
| 683 | for(j=0; j<3; j++){ | 
| 684 | tempA[j][i] = A[3*i + j]; | 
| 685 | } | 
| 686 | } | 
| 687 |  | 
| 688 | // initialize the tempJ | 
| 689 |  | 
| 690 | for( i=0; i<3; i++) tempJ[i] = ji[i]; | 
| 691 |  | 
| 692 | // initalize rot as a unit matrix | 
| 693 |  | 
| 694 | rot[0][0] = 1.0; | 
| 695 | rot[0][1] = 0.0; | 
| 696 | rot[0][2] = 0.0; | 
| 697 |  | 
| 698 | rot[1][0] = 0.0; | 
| 699 | rot[1][1] = 1.0; | 
| 700 | rot[1][2] = 0.0; | 
| 701 |  | 
| 702 | rot[2][0] = 0.0; | 
| 703 | rot[2][1] = 0.0; | 
| 704 | rot[2][2] = 1.0; | 
| 705 |  | 
| 706 | // use a small angle aproximation for sin and cosine | 
| 707 |  | 
| 708 | angleSqr  = angle * angle; | 
| 709 | angleSqrOver4 = angleSqr / 4.0; | 
| 710 | top = 1.0 - angleSqrOver4; | 
| 711 | bottom = 1.0 + angleSqrOver4; | 
| 712 |  | 
| 713 | cosAngle = top / bottom; | 
| 714 | sinAngle = angle / bottom; | 
| 715 |  | 
| 716 | rot[axes1][axes1] = cosAngle; | 
| 717 | rot[axes2][axes2] = cosAngle; | 
| 718 |  | 
| 719 | rot[axes1][axes2] = sinAngle; | 
| 720 | rot[axes2][axes1] = -sinAngle; | 
| 721 |  | 
| 722 | // rotate the momentum acoording to: ji[] = rot[][] * ji[] | 
| 723 |  | 
| 724 | for(i=0; i<3; i++){ | 
| 725 | ji[i] = 0.0; | 
| 726 | for(k=0; k<3; k++){ | 
| 727 | ji[i] += rot[i][k] * tempJ[k]; | 
| 728 | } | 
| 729 | } | 
| 730 |  | 
| 731 | // rotate the Rotation matrix acording to: | 
| 732 | //            A[][] = A[][] * transpose(rot[][]) | 
| 733 |  | 
| 734 |  | 
| 735 | // NOte for as yet unknown reason, we are performing the | 
| 736 | // calculation as: | 
| 737 | //                transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) | 
| 738 |  | 
| 739 | for(i=0; i<3; i++){ | 
| 740 | for(j=0; j<3; j++){ | 
| 741 | A[3*j + i] = 0.0; | 
| 742 | for(k=0; k<3; k++){ | 
| 743 | A[3*j + i] += tempA[i][k] * rot[j][k]; | 
| 744 | } | 
| 745 | } | 
| 746 | } | 
| 747 | } |