| 1 | 
  | 
#include <iostream> | 
| 2 | 
< | 
#include <cstdlib> | 
| 3 | 
< | 
#include <cmath> | 
| 2 | 
> | 
#include <stdlib.h> | 
| 3 | 
> | 
#include <math.h> | 
| 4 | 
  | 
 | 
| 5 | 
  | 
#ifdef IS_MPI | 
| 6 | 
  | 
#include "mpiSimulation.hpp" | 
| 25 | 
  | 
  if (info->the_integrator != NULL){ | 
| 26 | 
  | 
    delete info->the_integrator; | 
| 27 | 
  | 
  } | 
| 28 | 
– | 
  info->the_integrator = this; | 
| 28 | 
  | 
 | 
| 29 | 
  | 
  nAtoms = info->n_atoms; | 
| 30 | 
  | 
 | 
| 146 | 
  | 
 | 
| 147 | 
  | 
 | 
| 148 | 
  | 
template<typename T> void Integrator<T>::integrate(void){ | 
| 150 | 
– | 
  int i, j;                         // loop counters | 
| 149 | 
  | 
 | 
| 150 | 
  | 
  double runTime = info->run_time; | 
| 151 | 
  | 
  double sampleTime = info->sampleTime; | 
| 152 | 
  | 
  double statusTime = info->statusTime; | 
| 153 | 
  | 
  double thermalTime = info->thermalTime; | 
| 154 | 
+ | 
  double resetTime = info->resetTime; | 
| 155 | 
  | 
 | 
| 156 | 
+ | 
 | 
| 157 | 
  | 
  double currSample; | 
| 158 | 
  | 
  double currThermal; | 
| 159 | 
  | 
  double currStatus; | 
| 160 | 
+ | 
  double currReset; | 
| 161 | 
  | 
 | 
| 162 | 
  | 
  int calcPot, calcStress; | 
| 162 | 
– | 
  int isError; | 
| 163 | 
  | 
 | 
| 164 | 
  | 
  tStats = new Thermo(info); | 
| 165 | 
  | 
  statOut = new StatWriter(info); | 
| 166 | 
  | 
  dumpOut = new DumpWriter(info); | 
| 167 | 
  | 
 | 
| 168 | 
  | 
  atoms = info->atoms; | 
| 169 | 
– | 
  DirectionalAtom* dAtom; | 
| 169 | 
  | 
 | 
| 170 | 
  | 
  dt = info->dt; | 
| 171 | 
  | 
  dt2 = 0.5 * dt; | 
| 172 | 
  | 
 | 
| 173 | 
+ | 
  readyCheck(); | 
| 174 | 
+ | 
 | 
| 175 | 
  | 
  // initialize the forces before the first step | 
| 176 | 
  | 
 | 
| 177 | 
+ | 
  std::cerr << "Before initial Force calc\n"; | 
| 178 | 
+ | 
 | 
| 179 | 
  | 
  calcForce(1, 1); | 
| 177 | 
– | 
  // myFF->doForces(1,1); | 
| 180 | 
  | 
 | 
| 181 | 
+ | 
  if (nConstrained){ | 
| 182 | 
+ | 
    preMove(); | 
| 183 | 
+ | 
    constrainA(); | 
| 184 | 
+ | 
    calcForce(1, 1); | 
| 185 | 
+ | 
    constrainB(); | 
| 186 | 
+ | 
    std::cerr << "premove done\n"; | 
| 187 | 
+ | 
  } | 
| 188 | 
+ | 
 | 
| 189 | 
+ | 
 | 
| 190 | 
+ | 
 | 
| 191 | 
  | 
  if (info->setTemp){ | 
| 192 | 
  | 
    thermalize(); | 
| 193 | 
  | 
  } | 
| 194 | 
  | 
 | 
| 183 | 
– | 
  calcPot = 0; | 
| 184 | 
– | 
  calcStress = 0; | 
| 185 | 
– | 
  currSample = sampleTime; | 
| 186 | 
– | 
  currThermal = thermalTime; | 
| 187 | 
– | 
  currStatus = statusTime; | 
| 188 | 
– | 
   | 
| 195 | 
  | 
  calcPot     = 0; | 
| 196 | 
  | 
  calcStress  = 0; | 
| 197 | 
  | 
  currSample  = sampleTime + info->getTime(); | 
| 198 | 
  | 
  currThermal = thermalTime+ info->getTime(); | 
| 199 | 
  | 
  currStatus  = statusTime + info->getTime(); | 
| 200 | 
+ | 
  currReset   = resetTime  + info->getTime(); | 
| 201 | 
  | 
 | 
| 202 | 
  | 
  dumpOut->writeDump(info->getTime()); | 
| 203 | 
  | 
  statOut->writeStat(info->getTime()); | 
| 204 | 
  | 
 | 
| 198 | 
– | 
  readyCheck(); | 
| 205 | 
  | 
 | 
| 206 | 
+ | 
 | 
| 207 | 
  | 
#ifdef IS_MPI | 
| 208 | 
  | 
  strcpy(checkPointMsg, "The integrator is ready to go."); | 
| 209 | 
  | 
  MPIcheckPoint(); | 
| 232 | 
  | 
    } | 
| 233 | 
  | 
 | 
| 234 | 
  | 
    if (info->getTime() >= currStatus){ | 
| 235 | 
< | 
      statOut->writeStat(info->getTime());  | 
| 236 | 
< | 
      calcPot = 0;  | 
| 235 | 
> | 
      statOut->writeStat(info->getTime()); | 
| 236 | 
> | 
      calcPot = 0; | 
| 237 | 
  | 
      calcStress = 0; | 
| 238 | 
  | 
      currStatus += statusTime; | 
| 239 | 
< | 
    }  | 
| 239 | 
> | 
    } | 
| 240 | 
  | 
 | 
| 241 | 
+ | 
    if (info->resetIntegrator){ | 
| 242 | 
+ | 
      if (info->getTime() >= currReset){ | 
| 243 | 
+ | 
        this->resetIntegrator(); | 
| 244 | 
+ | 
        currReset += resetTime; | 
| 245 | 
+ | 
      } | 
| 246 | 
+ | 
    } | 
| 247 | 
+ | 
 | 
| 248 | 
+ | 
    std::cerr << "done with time = " << info->getTime() << "\n"; | 
| 249 | 
+ | 
 | 
| 250 | 
  | 
#ifdef IS_MPI | 
| 251 | 
  | 
    strcpy(checkPointMsg, "successfully took a time step."); | 
| 252 | 
  | 
    MPIcheckPoint(); | 
| 253 | 
  | 
#endif // is_mpi | 
| 254 | 
  | 
  } | 
| 255 | 
  | 
 | 
| 240 | 
– | 
  dumpOut->writeFinal(info->getTime()); | 
| 256 | 
  | 
 | 
| 257 | 
+ | 
  // write the last frame | 
| 258 | 
+ | 
  dumpOut->writeDump(info->getTime()); | 
| 259 | 
+ | 
 | 
| 260 | 
  | 
  delete dumpOut; | 
| 261 | 
  | 
  delete statOut; | 
| 262 | 
  | 
} | 
| 268 | 
  | 
 | 
| 269 | 
  | 
  moveA(); | 
| 270 | 
  | 
 | 
| 253 | 
– | 
  if (nConstrained){ | 
| 254 | 
– | 
    constrainA(); | 
| 255 | 
– | 
  } | 
| 271 | 
  | 
 | 
| 272 | 
  | 
 | 
| 273 | 
+ | 
 | 
| 274 | 
  | 
#ifdef IS_MPI | 
| 275 | 
  | 
  strcpy(checkPointMsg, "Succesful moveA\n"); | 
| 276 | 
  | 
  MPIcheckPoint(); | 
| 291 | 
  | 
 | 
| 292 | 
  | 
  moveB(); | 
| 293 | 
  | 
 | 
| 278 | 
– | 
  if (nConstrained){ | 
| 279 | 
– | 
    constrainB(); | 
| 280 | 
– | 
  } | 
| 294 | 
  | 
 | 
| 295 | 
+ | 
 | 
| 296 | 
  | 
#ifdef IS_MPI | 
| 297 | 
  | 
  strcpy(checkPointMsg, "Succesful moveB\n"); | 
| 298 | 
  | 
  MPIcheckPoint(); | 
| 304 | 
  | 
  int i, j; | 
| 305 | 
  | 
  DirectionalAtom* dAtom; | 
| 306 | 
  | 
  double Tb[3], ji[3]; | 
| 293 | 
– | 
  double A[3][3], I[3][3]; | 
| 294 | 
– | 
  double angle; | 
| 307 | 
  | 
  double vel[3], pos[3], frc[3]; | 
| 308 | 
  | 
  double mass; | 
| 309 | 
  | 
 | 
| 339 | 
  | 
      for (j = 0; j < 3; j++) | 
| 340 | 
  | 
        ji[j] += (dt2 * Tb[j]) * eConvert; | 
| 341 | 
  | 
 | 
| 342 | 
< | 
      // use the angular velocities to propagate the rotation matrix a | 
| 331 | 
< | 
      // full time step | 
| 342 | 
> | 
      this->rotationPropagation( dAtom, ji ); | 
| 343 | 
  | 
 | 
| 344 | 
< | 
      dAtom->getA(A); | 
| 345 | 
< | 
      dAtom->getI(I); | 
| 344 | 
> | 
      dAtom->setJ(ji); | 
| 345 | 
> | 
    } | 
| 346 | 
> | 
  } | 
| 347 | 
  | 
 | 
| 348 | 
< | 
      // rotate about the x-axis       | 
| 349 | 
< | 
      angle = dt2 * ji[0] / I[0][0]; | 
| 338 | 
< | 
      this->rotate(1, 2, angle, ji, A);  | 
| 339 | 
< | 
 | 
| 340 | 
< | 
      // rotate about the y-axis | 
| 341 | 
< | 
      angle = dt2 * ji[1] / I[1][1]; | 
| 342 | 
< | 
      this->rotate(2, 0, angle, ji, A); | 
| 343 | 
< | 
 | 
| 344 | 
< | 
      // rotate about the z-axis | 
| 345 | 
< | 
      angle = dt * ji[2] / I[2][2]; | 
| 346 | 
< | 
      this->rotate(0, 1, angle, ji, A); | 
| 347 | 
< | 
 | 
| 348 | 
< | 
      // rotate about the y-axis | 
| 349 | 
< | 
      angle = dt2 * ji[1] / I[1][1]; | 
| 350 | 
< | 
      this->rotate(2, 0, angle, ji, A); | 
| 351 | 
< | 
 | 
| 352 | 
< | 
      // rotate about the x-axis | 
| 353 | 
< | 
      angle = dt2 * ji[0] / I[0][0]; | 
| 354 | 
< | 
      this->rotate(1, 2, angle, ji, A); | 
| 355 | 
< | 
 | 
| 356 | 
< | 
 | 
| 357 | 
< | 
      dAtom->setJ(ji); | 
| 358 | 
< | 
      dAtom->setA(A); | 
| 359 | 
< | 
    } | 
| 348 | 
> | 
  if (nConstrained){ | 
| 349 | 
> | 
    constrainA(); | 
| 350 | 
  | 
  } | 
| 351 | 
  | 
} | 
| 352 | 
  | 
 | 
| 373 | 
  | 
    if (atoms[i]->isDirectional()){ | 
| 374 | 
  | 
      dAtom = (DirectionalAtom *) atoms[i]; | 
| 375 | 
  | 
 | 
| 376 | 
< | 
      // get and convert the torque to body frame       | 
| 376 | 
> | 
      // get and convert the torque to body frame | 
| 377 | 
  | 
 | 
| 378 | 
  | 
      dAtom->getTrq(Tb); | 
| 379 | 
  | 
      dAtom->lab2Body(Tb); | 
| 389 | 
  | 
      dAtom->setJ(ji); | 
| 390 | 
  | 
    } | 
| 391 | 
  | 
  } | 
| 392 | 
+ | 
 | 
| 393 | 
+ | 
  if (nConstrained){ | 
| 394 | 
+ | 
    constrainB(); | 
| 395 | 
+ | 
  } | 
| 396 | 
  | 
} | 
| 397 | 
  | 
 | 
| 398 | 
  | 
template<typename T> void Integrator<T>::preMove(void){ | 
| 411 | 
  | 
} | 
| 412 | 
  | 
 | 
| 413 | 
  | 
template<typename T> void Integrator<T>::constrainA(){ | 
| 414 | 
< | 
  int i, j, k; | 
| 414 | 
> | 
  int i, j; | 
| 415 | 
  | 
  int done; | 
| 416 | 
  | 
  double posA[3], posB[3]; | 
| 417 | 
  | 
  double velA[3], velB[3]; | 
| 551 | 
  | 
    painCave.isFatal = 1; | 
| 552 | 
  | 
    simError(); | 
| 553 | 
  | 
  } | 
| 554 | 
+ | 
 | 
| 555 | 
  | 
} | 
| 556 | 
  | 
 | 
| 557 | 
  | 
template<typename T> void Integrator<T>::constrainB(void){ | 
| 558 | 
< | 
  int i, j, k; | 
| 558 | 
> | 
  int i, j; | 
| 559 | 
  | 
  int done; | 
| 560 | 
  | 
  double posA[3], posB[3]; | 
| 561 | 
  | 
  double velA[3], velB[3]; | 
| 564 | 
  | 
  int a, b, ax, ay, az, bx, by, bz; | 
| 565 | 
  | 
  double rma, rmb; | 
| 566 | 
  | 
  double dx, dy, dz; | 
| 567 | 
< | 
  double rabsq, pabsq, rvab; | 
| 573 | 
< | 
  double diffsq; | 
| 567 | 
> | 
  double rvab; | 
| 568 | 
  | 
  double gab; | 
| 569 | 
  | 
  int iteration; | 
| 570 | 
  | 
 | 
| 654 | 
  | 
  } | 
| 655 | 
  | 
} | 
| 656 | 
  | 
 | 
| 657 | 
+ | 
template<typename T> void Integrator<T>::rotationPropagation | 
| 658 | 
+ | 
( DirectionalAtom* dAtom, double ji[3] ){ | 
| 659 | 
+ | 
 | 
| 660 | 
+ | 
  double angle; | 
| 661 | 
+ | 
  double A[3][3], I[3][3]; | 
| 662 | 
+ | 
 | 
| 663 | 
+ | 
  // use the angular velocities to propagate the rotation matrix a | 
| 664 | 
+ | 
  // full time step | 
| 665 | 
+ | 
 | 
| 666 | 
+ | 
  dAtom->getA(A); | 
| 667 | 
+ | 
  dAtom->getI(I); | 
| 668 | 
+ | 
 | 
| 669 | 
+ | 
  // rotate about the x-axis | 
| 670 | 
+ | 
  angle = dt2 * ji[0] / I[0][0]; | 
| 671 | 
+ | 
  this->rotate( 1, 2, angle, ji, A ); | 
| 672 | 
+ | 
 | 
| 673 | 
+ | 
  // rotate about the y-axis | 
| 674 | 
+ | 
  angle = dt2 * ji[1] / I[1][1]; | 
| 675 | 
+ | 
  this->rotate( 2, 0, angle, ji, A ); | 
| 676 | 
+ | 
 | 
| 677 | 
+ | 
  // rotate about the z-axis | 
| 678 | 
+ | 
  angle = dt * ji[2] / I[2][2]; | 
| 679 | 
+ | 
  this->rotate( 0, 1, angle, ji, A); | 
| 680 | 
+ | 
 | 
| 681 | 
+ | 
  // rotate about the y-axis | 
| 682 | 
+ | 
  angle = dt2 * ji[1] / I[1][1]; | 
| 683 | 
+ | 
  this->rotate( 2, 0, angle, ji, A ); | 
| 684 | 
+ | 
 | 
| 685 | 
+ | 
  // rotate about the x-axis | 
| 686 | 
+ | 
  angle = dt2 * ji[0] / I[0][0]; | 
| 687 | 
+ | 
  this->rotate( 1, 2, angle, ji, A ); | 
| 688 | 
+ | 
 | 
| 689 | 
+ | 
  dAtom->setA( A  ); | 
| 690 | 
+ | 
} | 
| 691 | 
+ | 
 | 
| 692 | 
  | 
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, | 
| 693 | 
  | 
                                                double angle, double ji[3], | 
| 694 | 
  | 
                                                double A[3][3]){ | 
| 754 | 
  | 
    } | 
| 755 | 
  | 
  } | 
| 756 | 
  | 
 | 
| 757 | 
< | 
  // rotate the Rotation matrix acording to:  | 
| 757 | 
> | 
  // rotate the Rotation matrix acording to: | 
| 758 | 
  | 
  //            A[][] = A[][] * transpose(rot[][]) | 
| 759 | 
  | 
 | 
| 760 | 
  | 
 | 
| 779 | 
  | 
template<typename T> void Integrator<T>::thermalize(){ | 
| 780 | 
  | 
  tStats->velocitize(); | 
| 781 | 
  | 
} | 
| 782 | 
+ | 
 | 
| 783 | 
+ | 
template<typename T> double Integrator<T>::getConservedQuantity(void){ | 
| 784 | 
+ | 
  return tStats->getTotalE(); | 
| 785 | 
+ | 
} | 
| 786 | 
+ | 
template<typename T> string Integrator<T>::getAdditionalParameters(void){ | 
| 787 | 
+ | 
  //By default, return a null string | 
| 788 | 
+ | 
  //The reason we use string instead of char* is that if we use char*, we will | 
| 789 | 
+ | 
  //return a pointer point to local variable which might cause problem | 
| 790 | 
+ | 
  return string(); | 
| 791 | 
+ | 
} |